Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.de/ijleo

Research on the spin-Hamiltonian parameters for the approximately trigonal Mn^{5+} tetrahedral center in $Sr_5(PO_4)_3Cl$ crystal

Wu Xiao-Xuan^a, Zheng Wen-Chen^{b,*}

^a Department of Physics, Civil Aviation Flight University of China, Guanghan, People's Republic of China ^b Department of Material Science, Sichuan University, Chengdu, People's Republic of China

ARTICLE INFO

Article history: Received 15 August 2015 Accepted 10 December 2015

Keywords: Electron paramagnetic resonance Crystal- and ligand-field theory Charge-transfer mechanism Mn⁵⁺ Sr₅(PO₄)₃Cl

ABSTRACT

The spin-Hamiltonian parameters (g factors $g_{||}, g_{\perp}$ and zero-field splitting D) of the approximately trigonal Mn^{5+} tetrahedral cluster in $Sr_5(PO_4)_3$ Cl crystal are computed from the complete high-order perturbation formulas established on the two-mechanism model, in which in addition to the contributions due to the frequently-applied crystal-field (*CF*) mechanism in the *CF* theory, those due to the commonly-ignored charge-transfer (*CT*) mechanism are contained. The calculated results are in rational accordance with the experimented values. The calculations demonstrate that for the high valence state d^n clusters in crystals, the contributions to spin-Hamiltonian parameters from the *CT* mechanism should also be considered. The negative sign of zero-field splitting D and the defect structure of the approximately trigonal Mn^{5+} center in $Sr_5(PO_4)_3$ Cl are proposed from the calculations.

© 2015 Elsevier GmbH. All rights reserved.

1. Introduction

Since the infrared laser action was discovered for Cr^{4+} ion at the tetrahedral Si⁴⁺ site of forsterite Mg₂SiO₄ crystal [1,2], the tetrahedrally coordinated $3d^2$ (e.g., Cr^{4+} , Mn^{5+} and Fe^{6+}) ions doped in crystals and their spectroscopic properties have attracted significant attention because these materials have the potential applications in infrared tunable lasers [3–10] and the vivo fluorescence imaging [11]. Misra et al. [10] reported the EPR spectra of Mn^{5+} -doped $Sr_5(PO_4)_3$ Cl crystal. From the EPR experiment, an orthorhombic Mn^{5+} tetrahedral center attributed to Mn^{5+} occupying the tetrahedral P^{5+} site was found and its spin-Hamiltonian parameters (g factors $g_{||}$, g_{\perp} and zero-field splittings D, E) were given [10]. Since the orthorhombic component E of zero-field splitting is very small and may be neglected, the Mn^{5+} center can be approximated as C_{3v} symmetry [10]. To date no theoretical explanations or calculations for the spin-Hamiltonian parameters $g_{||}$, g_{\perp} and D of the approximately trigonal Mn^{5+} center in $Sr_5(PO_4)_3$ Cl crystal have been found in the literature. It is known that the reasonable calculations rely upon the suitable theoretical method or model. Mn^{5+} ion has high valence state which leads the charge-transfer (CT) energy levels to become lower, so, besides the contributions to spin- Hamiltonian parameters due to crystal-field (CF) mechanism related to the interactions of CF excited states with the ground state in the vastly-applied CF theory, the contributions due to CT mechanism concerning the interactions of CT excited states with the ground state are also considered. Thus, a two (CF and CT)-mechanism model [12,14] should be applied here. In the present paper, the high-order perturbation formulas established on the two-mechanism model are adopted to calculate the spin-Hamiltonian parameters $g_{||}$, g_{\perp} and D for the approximately trigonal Mn^{5+} tetrahedral center

2. Calculations

By means of the one-electron basis functions (which consist of anti-bonding and bonding orbitals, corresponding to *CF* and *CT* mechanisms, respectively) and the perturbation method in the two-mechanism model [14], the high-order perturbation formulas of spin-Hamiltonian parameters $g_{||}$, g_{\perp} and *D* for a trigonal d² tetrahedral cluster are deduced as [14]

* Corresponding author. Tel.: +86 2885412371; fax: +86 28 85416050. *E-mail address:* zhengwc1@163.com (Z. Wen-Chen).

http://dx.doi.org/10.1016/j.ijleo.2015.12.106 0030-4026/© 2015 Elsevier GmbH. All rights reserved.

$$\begin{split} g_{//} &= g_{s} + \Delta g_{//}^{CF} + \Delta g_{//}^{CT} \\ \Delta g_{//}^{CF} &= -4k_{CF}'\zeta_{CF}'/E_{1} - [g_{e}\left(\zeta_{CF}'\right)^{2} + k_{CF}'\zeta_{CF}\zeta_{CF}' - k_{CF}\left(\zeta_{CF}'\right)^{2}/2]/E_{1}^{2} \\ &- (g_{e} - k_{CF}/2)\left(\zeta_{CF}'\right)^{2}/E_{2}^{2} - k_{CF}'\zeta_{CF}'/(E_{1}E_{2}) - 6Bk_{CF}'\left(\zeta_{CF}'\right)^{2} \\ \times [2/(E_{1}E_{2}E_{5}) + 1/(E_{2}^{2}E_{5})] + 4k_{CF}'\zeta_{CF}'\nu/(3E_{1}^{2}) - 4\sqrt{2}\zeta'\nu' \\ \times [k_{CF}/(E_{1}E_{3}) + 12Bk_{CF}'/(E_{1}E_{3}E_{4})] \\ &\Delta g_{//}^{CF} = 4(k_{CT}'\zeta_{CT}'/E_{n} + k_{CT}\zeta_{CT}/E_{a}) - 8k_{CT}\zeta_{CT}\nu/(9E_{a}^{2}) \\ &g_{\perp} = g_{s} + \Delta g_{\perp}^{CF} + \Delta g_{\perp}^{CT} \\ \Delta g_{\perp}^{CF} = \Delta g_{//}^{CF} - 2k_{CF}'\zeta_{CF}'\nu/E_{1}^{2} + 6\sqrt{2}\zeta_{CF}'\nu'[k_{CF}/(E_{1}E_{3}) + 12Bk_{CF}'/(E_{1}E_{3}E_{4})] \\ &\Delta g_{\perp}^{CF} = \Delta g_{//}^{CF} - 2k_{CF}'\zeta_{T}'\nu/E_{1}^{2} + 6\sqrt{2}\zeta_{CF}'\nu'[k_{CF}/(E_{1}E_{3}) + 12Bk_{CF}'/(E_{1}E_{3}E_{4})] \\ &\Delta g_{\perp}^{CF} = \Delta g_{//}^{CF} - 2k_{CF}'\zeta_{T}'\nu/E_{1}^{2} + 6\sqrt{2}\zeta_{CF}'\nu'(3E_{a}^{2}) \\ &D = D^{CF} + D^{CT} \\ D^{CF} = \frac{\nu}{2}\left(\zeta_{CF}'\right)^{2}(1/E_{1}^{2} - 1/E_{2}^{2}) + \frac{3\nu'}{\sqrt{2}}\{\zeta_{CF}\zeta_{CF}[1/(E_{2}E_{3}) - 1/(E_{1}E_{3})] + 4B\left(\zeta_{CF}'\right)^{2}[1/(E_{2}E_{3}E_{5}) + 1/(E_{2}^{2}E_{5}) - 3/(E_{1}E_{3}E_{4}) - 3/(E_{2}E_{3}E_{4})]\} \\ D^{CT} = -\zeta_{T}^{2}\nu'(3E_{a}^{2}) \end{aligned}$$

(1)

with

$$\begin{aligned} \zeta_{CF} &= \left(N_{t}^{a}\right)^{2} \left\{ \zeta_{d}^{0} + \left[\sqrt{2}\lambda_{\pi}^{a}\lambda_{\sigma}^{a} - (\lambda_{\pi}^{a})^{2}/2\right] \zeta_{p}^{0} \right\}, \\ \zeta_{CF}^{'} &= N_{t}^{a} \cdot N_{e}^{a} \left\{ \zeta_{d}^{0} + \left[\lambda_{\pi}^{a}\lambda_{\sigma}^{a}/\sqrt{2} + (\lambda_{\pi}^{a})^{2}/2\right] \zeta_{p}^{0} \right\}, \\ \zeta_{CT}^{'} &= N_{t}^{a} \cdot N_{t}^{b} \left\{ \zeta_{d}^{0} + \left[\frac{\lambda_{\pi}^{a}\lambda_{\sigma}^{b} + \lambda_{\pi}^{b}\lambda_{\sigma}^{a}}{\sqrt{2}} - \frac{\lambda_{\pi}^{a}\lambda_{\pi}^{b}}{2} \right] \zeta_{p}^{0} \right\}, \\ \zeta_{CT}^{'} &= N_{t}^{b} \cdot N_{e}^{a} \left\{ \zeta_{d}^{0} + \left[\frac{\lambda_{\pi}^{a}\lambda_{\sigma}^{b} + \lambda_{\pi}^{b}\lambda_{\sigma}^{a}}{\sqrt{2}} - \frac{\lambda_{\pi}^{a}\lambda_{\pi}^{b}}{2} \right] \zeta_{p}^{0} \right\}, \\ k_{CF}^{'} &= (N_{t}^{a})^{2} \left[1 - (\lambda_{\pi}^{a})^{2}/2 + \sqrt{2}\lambda_{\pi}^{a}\lambda_{\sigma}^{a} + 2\lambda_{\sigma}^{a}S_{dp}(\sigma) + 2\lambda_{\pi}^{a}S_{dp}(\pi) \right], \\ k_{CF}^{'} &= N_{t}^{a} \cdot N_{e}^{a} \left[1 - (\lambda_{\pi}^{a})^{2}/2 + \lambda_{\pi}^{a}\lambda_{\sigma}^{a}/\sqrt{2} + 4\lambda_{\pi}^{a}S_{dp}(\sigma) + \lambda_{\sigma}^{a}S_{dp}(\sigma) \right], \\ k_{CT}^{'} &= N_{t}^{a}N_{e}^{b} \left\{ 1 + \left[\frac{\lambda_{\pi}^{a}\lambda_{\sigma}^{b}}{\sqrt{2}} - \frac{\lambda_{\pi}^{a}\lambda_{\pi}^{b}}{2} \right] + (\lambda_{\sigma}^{a} + \lambda_{\sigma}^{b})S_{dp}(\sigma) + (\lambda_{\pi}^{a} + \lambda_{\pi}^{b})S_{dp}(\pi) \right\}, \\ k_{CT}^{'} &= N_{t}^{b}N_{e}^{a} \left\{ 1 + \left[\frac{\lambda_{\pi}^{a}\lambda_{\sigma}^{b}}{\sqrt{2}} - \frac{\lambda_{\pi}^{a}\lambda_{\pi}^{b}}{2} \right] + \lambda_{\sigma}^{b}S_{dp}(\sigma) + (3\lambda_{\pi}^{a} + \lambda_{\pi}^{b})S_{dp}(\pi) \right\}, \end{aligned}$$

where the superscripts and subscripts *CF* and *CT* stand for the parameters in *CF* and *CT* mechanisms. $g_s \approx 2.0023$, the *g* value of free electron. E_j (j = 1-5) are the zero-order energy denominations between the *CF* excited states and the ground state. They are the functions of Racah parameters *B*, *C* and the cubic field parameter Dq of the studied system and their expressions are given in Ref. [14]. E_a and E_n are the *CT* energy levels. For $(MnO_4)^{3-}$ clusters considered, $E_n \approx 31,600 \text{ cm}^{-1}$ and $E_a \approx 33,600 \text{ cm}^{-1}$ [15]. v and v' are the trigonal field parameters. ζ_d^0 and ζ_p^0 are the spin-orbit coupling parameters of free dⁿ ion and free ligand ion. For $(MnO_4)^{3-}$ cluster, we have ζ_d^0 $(Mn^{5+}) \approx 503 \text{ cm}^{-1}$ [16] and ζ_p^0 (O^{2-}) $\approx 150 \text{ cm}^{-1}$ [17]. The group overlap integrals S_{dp} (β) ($\beta = \sigma, \pi$) rely on the average metal-ligand distance \bar{R} of the studied cluster. The metal-ligand distance *R* in an impurity center may be unlike the corresponding distance R_h in the host crystal because of the difference between the ionic radii r_i of impurity and r_h of the replaced host ion. An approximate formula $R \approx R_h + (r_i - r_h)/2$ [18] is often applied to estimate the distance *R*. From $R_{h1} \approx 1.540$ Å, $R_{h2} \approx 1.539$ Å [19], r_i (Mn^{5+}) ≈ 0.47 Å and r_h (P^{5+}) ≈ 0.31 Å [20], we have $R_1 \approx 1.62$ Å, $R_2 \approx 1.619$ Å and $\bar{R} \approx 1.639$ Å. Thus, we obtain S_{dp} (σ) ≈ -0.1151 and S_{dp} (π) ≈ 0.0393 from the Slater-type self-consistent field (SCF) functions [21,22] for the (MnO_4)^{3-} cluster in $S_5(PO_4)_3$ Cl:Mn⁵⁺ crystal.

The molecular orbital (MO) coefficients N_{γ}^{X} (X = *a*, *b*, γ = *t*, *e*) and λ_{β}^{X} needed for calculations of the parameters in Eq. (2) follow the normalization correlations [14]

$$N_{e}^{X} = \left[1 + 3\left(\lambda_{\sigma}^{X}\right)^{2} + 6\lambda_{\pi}^{X}S_{dp}(\pi)\right]^{-1/2}$$

$$N_{t}^{X} = \left[1 + \left(\lambda_{\sigma}^{X}\right)^{2} + \left(\lambda_{\pi}^{X}\right)^{2} + 2\lambda_{\sigma}^{X}S_{dp}(\sigma) + 2\lambda_{\pi}^{X}S_{dp}(\pi)\right]^{-1/2},$$
(3)

Download English Version:

https://daneshyari.com/en/article/847145

Download Persian Version:

https://daneshyari.com/article/847145

Daneshyari.com