
Optik 127 (2016) 5215–5218

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

Entanglement  dynamics  of  two  qubits  induced  by  a  reservoir
of  coupled  bosons

Zhongjie  Wang ∗,  Qijia  Tai
Department of Physics, Anhui Normal University, Wuhu 241000, China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 23 January 2016
Accepted 29 February 2016

Keywords:
Degenerate coupled bosons reservior
Entanglement dynamics
Concurrence

a  b  s  t  r  a  c  t

Entanglement  dynamics  of  two qubits  coupling  to  the degenerate  coupled  bosons  reservoir  (DCBR)  have
been  analyzed.  In the case  of  weak  coupling,  the  envelope  of  the  concurrence  function  shows  exponential
decay,  and  the  stable  concurrence  shows  oscillating  change  with  coupling  strength  between  modes.  In
the  case  of strong  coupling,  the  concurrence  function  instead  shows  non-exponential  decay  in the initial
short  time.
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1. Introduction

Entanglement of many-body quantum system has attracted
much interest due to its fundamental importance in quan-
tum information processing and quantum computation [1–3].
The uncontrolled interactions of the quantum system with its
surrounding environment will result in irreversible decay of entan-
glement. In open quantum system theory, the environment is often
represented as a collection of harmonic-oscillators (commonly
referred to as a boson environment) [4]. Entanglement dynamics of
qubits coupling to a boson environment have been investigated by
using spin-boson model or a master equation of the Lindblad form
[5–12]. It has been shown that in bipartite systems nonlocal deco-
herence (disentanglement) induced by environment, as opposite to
the usual local decoherence, decays suddenly with time [13–18].
This phenomenon is called entanglement sudden death [ESD]. An
experimental evidence about ESD has been reported recently by
Almeida et al. [18]. ESD has been firstly analyzed [17] in a sim-
ple and realistic model where two initially entangled two-level
atoms separately interact with the multimode vacuum noise of
two distinct cavities. They found out that the nonlocal decoher-
ence may  take place suddenly or at least as fast as the sum of the
normal single atom decay rates. This ESD has been analyzed also
for two Jaynes–Cummings (JC) atoms [18], where the dynamics
of the entanglement between the atomic internal variables shows
different peculiarities for different initial states, and also shows
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sudden decaying of entanglement that are followed by periodic
revivals.

In this paper, we  investigate entanglement dynamics of two
qubits interacting with a degenerate coupling bosons reservoir
(DCBR). We  analyze the feature of the time evolution of the con-
currence in short time. For small coupling strength between modes,
we find that under weak coupling conditions, the envelope of the
concurrence function shows exponential decay, but under strong
coupling conditions, the concurrence function shows. Gaussian
decay.

2. DCBR model

Let us study the decoherence of two two-level atom (qubit)
coupling to the environment formed by a set of N nearest-neighbor-
interacting bosons with the same frequency ω [so called degenerate
coupled bosons reservior (DCBR)]. We  consider the qubit interacts
all the bosons in the environment. The Hamiltonian of the total
system is given by (�  = 1)

H = HS + HB + HSB (1)

HS = ωa

2
�z (2)
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where ωa is the atomic transition frequency, �zj (j = 1, 2) is the
Pauli operator of the jth qubit, bk and b+

k
are annihilation and

creation operators for the kth mode of the bath, respectively. J
is intramode coupling parameter, gk is coupling coefficient of the
atom to the kth mode of the bath. It is noted that the environment
Hamiltonian HB [to see Eq. (3)] contains two terms: the first term
is the free Hamiltonian, the second term describes the interacting
Hamiltonian between bath modes. In the following, we  diagonalize
the Hamitonian HB. Making Fourier transformation for the opera-
tors bk and b+

k

bk = 1√
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{

i
2�jk

N
aj

}
(5)
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we can obtain the transformed the environment Hamitonian HB

as

HB =
N∑

k=1

˝ka+
k

ak (7)

where ˝k = ω + 2J cos
(

2k�/N
)

, a+
j

and aj are boson operators. The

interaction Hamiltonian HSB described by a+
j

and aj can be repre-
sented as

HSB =
N∑

k=1
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(
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k

)
(8)

where Gk =
∑N

j=1gke−i�jk/N . It is noted that Gk and gk constitute a
pair of the Fourier transformation relationship. In the interaction
picture, the interaction Hamiltonian is

HSB(t) =
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The evolution operator of the system is obtained by the follow-
ing equation:

U(t, 0) = Te
−i

∫ t
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where T is timing order operator, �k(t) = 2Gk (1 − eit˝k ) /˝k. In
order to derive the density operator of the qubit at any time,
we first assume that the initial density operator of the system is
�(0) = �S(0) ⊗ �E(0), �S(0) and �E(0) are the initial density operator
of the qubit and the reservior, respectively. �E(0) May be repre-
sented as

�E(0) =
N∏

k=1
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k

bk

1 − eˇω
=

N∏
k=1

�E,k(ˇ) (11)
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ak /
(
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)

,  ̌ = 1/kBT with kB being
Boltzmann constant, T being absolute temperature. The density
operator of the qubit at any time is

�S (t) = TrE

{
U (t, 0) �S (0) ⊗ �E (0) U+ (t, 0)

}
(12)

where TrE {. . .} denotes trace of the environment variables. In order
to study the dynamics of entanglement in our model, we employ

the concurrence as a entanglement measure. The concurrence is
defined as [15]

C (�S) = max
{

0, �1 − �2 − �3 − �4
}

(13)

where �i (�1 ≥ �2 ≥ �3 ≥ �4) are the eigenvalues of the time-
dependent operator �S

(
�y ⊗ �y

)
�S

∗ (
�y ⊗ �y

)
. The concurrence

ensures the scale between 0 and 1. In particular, C (�S) = 1 indi-
cates maximum entanglement between the two  qubits, whereas
C (�S) = 0 represents disentanglement. In order to compute the
concurrence. In the subspace spanned by the basic atomic vectors
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Fig. 1. The evolution of the concurrence with the scaled time � = ωt for the different
parameter m with g/ω = 0.01, J/ω = 0.5, (a) m = 0, the dotted line corresponds to the
exponential function exp(−0.022ωt), (b) m = 0.5, the dotted line corresponds to the
exponential function 0.9exp(−0.055ωt), (c) m = 1, the dotted line corresponds to the
exponential function 0.7exp(−0.058ωt).
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