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a  b  s  t  r  a  c  t

In  this  paper,  we  discretize  time  derivative  terms  by  a forward  difference  scheme  and  linearize  the
nonlinear  terms  using  a quasilinearization  technique  to reduce  the  original  equation  into  a  system  of
ordinary  differential  equations.  Then  the  Haar wavelet  quasilinearization  approach  is applied  to compute
the  numerical  solutions  of the  Hunter–Saxton  equation.  Computer  simulations  show  that  our  obtained
results  are  in  a good  agreement  with  the exact  solution.
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1. Introduction

Hunter–Saxton equation [1],

(ut + uux)x = 1
2
u2
x , (1)

or equivalently,

uxt + uuxx + 1
2
u2
x = 0, (2)

where x and t are scaled position and time coordinates respectively
and the initial condition is as follows

u(x, 0) = f (x), (3)

with boundary condition

lim
x→∞

u(x, 0) = 0. (4)

For other situations, it may  be more reasonable to enforce a bound-
ary condition

lim
t→∞

u(x, 0) = 0, (5)

which yields a solution that decays for large time. The
Hunter–Saxton (HS) equation is a nonlinear wave equation which
has been used to describe waves in a massive director field of a
nematic liquid crystal and arises as the short-wave limit of the
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Camassa–Holm equation [2], an integrable model the unidirecti-
onal propagation of shallow water waves over a flat bottom [3].
It has a re-expression of the geodesic flow on the diffeomorphism
group of the circle with a bi-Hamiltonian structure [4] which is
completely integrable [5]. In literature, many numerical methods
have been proposed for approximating solution of the generalized
Burgers–Huxley equation. Baxterq et al. [6] obtained the Separable
Solutions and Self-Similar Solutions of the Hunter–Saxton wave
equation. Wei  and Yin also studied the periodic Hunter–Saxton
equation with weak dissipation [7]. Yin [8] proved the local exist-
ence of strong solutions of the periodic Hunter–Saxton equation
and showed that all strong solutions except space-independent
solutions blow up in nite time [9]. Wei  obtained global weak
solution for a periodic generalized Hunter–Saxton equation in
[9].

Many powerful and efficient methods have been proposed to
obtain numerical solutions and exact solutions of partial differen-
tial equations so far. For example, the sine-cosine method [10],
the He’s semi-inverse method [11], the wavelet spectral analysis
[12], the direct algebraic method [13], the extended tanh-function
method [14], the homotopy analysis method [15] and the extended
homoclinic test approach [16].

In recent years the wavelets have been used for the solu-
tion of partial differential equations. Different types of wavelets
and approximating functions have been used in numerical solu-
tion of differential equations. The Haar wavelet quasilinearization
approach is the simplest one among the different wavelet families
which are defined by an analytical expression. Due to its simplicity,
Haar wavelet quasilinearization approach is very effective to solve
ordinary and partial differential equations. The notion of wavelets
is introduced by Alfred Haar in 1910. Expression of Haar wavelets
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is very simple. Besides they have orthogonal and normalization
with compact support properties. Therefore, the Haar wavelets are
very efficient and effective tools to solve the nonlinear systems in
physics, biology, chemical reactions and fluid mechanics [17–23].
In this paper, we will apply the Haar wavelet quasilinearization
approach for solving Hunter–Saxton equation.

This paper is organized as follows: in the next section we
present a brief introduction on preliminaries of Haar wavelets and
its integrals. Section 3 describes the quasilinearization technique
for nonlinear terms. Convergence of method is discussed in Sec-
tion 4. In Section 5, Haar wavelets method is used for solving
the Hunter–Saxton equation. Numerical results are presented in
Section 6 which Eq. (1) with the initial conditions and boundary
conditions is solved. Finally, the paper in concluded in Section 7.

2. Haar wavelets

The Haar wavelets family {hi(x)} is defined as a group of ortho-
gonal square waves with magnitude ±1 in some intervals and zero
elsewhere as follows

hi(x) =

⎧⎪⎨
⎪⎩

1 x ∈ [�1, �2),

−1 x ∈ [�2, �3),

0 otherwise,

(6)

where the notations �1 = k/m, �2 = (k + 0.5)/m,  �3 = (k + 1)/m are
introduced. The integer m = 2j, (j = 0, 1, . . .,  J) indicates the level of
the wavelets, where J is the maximal level of resolution and k = 0,
1, . . .,  m − 1 is the translation parameter. The subscript i can be
expressed as i = m + k + 1, such that in the case of m = 1, k = 0 we have
i = 2; the maximal value of i is i = 2 M = 2J+1. For i = 1, the function
h1(x) is a scaling function for the family of the Haar wavelets as

h1(x) =
{

1 x ∈ [0,  1),

0  otherwise.

We  introduce the following notations; for i > 1

Pi,1(x) =
∫ xl

0

hi(x)dx, (7)

Pi,n+1(x) =
∫ x

0

Pi,n(x)dx, n = 1, 2, . . . (8)

where for l = 1, 2, . . .,  2M, xl = (l − 0.5)/2M are the collocation points.
By using Eqs. (6) and (8) we have

Pi,n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < �1,

(x − �1)n

n!
x ∈ [�1, �2),

(x − �1)n

n!
− 2

(x − �2)n

n!
x ∈ [�2, �3),

(x − �1)n

n!
− 2

(x − �2)n

n!
+ (x − �3)n

n!
x > �3.

(9)

It is well-known that any integrable function u(x) ∈ L2 [0, 1) can
be expanded by a Haar series with an infinite number of terms as
follows

u(x) =
∞∑
i=1

aihi(x). (10)

The above series terminates at finite terms if u(x) is a piecewise
constant or can be approximated as a piecewise constant function

during each subinterval, then u(x) will be terminated at finite terms,
i.e.,

u(x) =
2M∑
i=1

aihi(x) = aT(2M)h(2M)(x), (11)

where the coefficients aT(2M) and the Haar function vector h(2M)(x)
are defined as

aT(2M) = [a1, a2, . . .,  a2M]

h(2M)(x) = [h1(x), h2(x), . . .,  h2M(x)]T ,

where superscript T shows the transpose operator and M = 2J.

3. Quasilinearization

The quasilinearization approach [23] is a generalized
Newton–Raphson technique for functional equations. It con-
verges quadratically to the exact solution. Also, if there is a
convergence at all, it has a monotonic convergence.

Consider the nonlinear nth order differential equation

Lnu(x) = f (u(x), u′(x), . . .,  un−1(x), x). (12)

Application of quasilinearization technique to (12) yields

Lnur+1(x) = f (ur(x), u′
r(x), . . .,  un−1

r (x), x)

+
n−1∑
j=0

(ujr+1(x) − ujr(x))fuj (ur(x), u′
r(x), . . .,  un−1

r (x), x),

(13)

with the initial and boundary conditions at (r + 1)th iteration, where
n is the order of the differential equation. Eq. (13) is always a linear
differential equation and can be solved recursively, where ur(x) is
known and one can use it to get ur+1(x).

4. Convergence of Haar wavelet method

Multi-resolution analysis (MRA) is the best way to understand
the notion of wavelets [24]. Let u(x) ∈ L2[0, 1), MRA  of L2[0, 1) gen-
erates a sequence of subspaces Vj, Vj+1, Vj+2, . . . of L2[0, 1) in such
a way that the projection of u(x) onto these spaces produces more
magnificent approximations of the function u(x) as J→ ∞,  then the
corresponding error at Jth level may  be defined as

eJ(t) = |u(t) − uJ(t)| = |u(t) −
2j+1∑
i=1

aihi(t)| = |
∞∑

i=2j+1

aihi(t)|. (14)

We can analyze the error for nonlinear partial differential equa-
tions. Convergence of the method may  be discussed on the same
lines as given in Saeedi et al. [25]. We can also discuss the conver-
gence of the method for nonlinear partial differential equations if
we know the exact solution.

Theorem. Suppose that f(x)satisfies a Lipschitz condition on [0, 1],
that is, there exists positive K such that for all x, y ∈ [0, 1] we have
|f(x) − f(y)| ≤ K|x − y|, K is the Lipschitz constant. The error bound for
‖eJ(x) ‖ 2 is also obtained as

‖eJ(x)‖2 ≤
(

M√
32J+1

)
. (15)
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