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Amplification of absorption spectrum of a weak signal probing the system of a dissipative single 2-level
atom in the presence of a broadband squeezed vacuum (SV) reservoir and driven by a non-resonant
mono- or bi-chromatic coherent field is investigated. The non-autonomous model Bloch equations yields
solutions for the atomic variables of all harmonic frequency components, exp(+invt); n=0, 1, ... where
v is the probe frequency detuning. Amplification of the fundamental (n=0) and the first harmonic (n=1)
frequency components associated with the central part (|v| < 1) of the spectrum is shown with: (i) simul-
taneous change of atomic and probe frequency detunings, and (ii) change of SV phase and photon number
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1. Introduction

Absorption spectrum of a weak field probing a strongly
driven dissipative 2-level atom, as theoretically predicted [1] and
experimentally verified at optical frequencies [2], shows that
the absorption line-shape is amplified (i.e. negative absorption)
at the expense of the strong driving (pump) field in the vicinity of
the Rabi frequency side bands, together with a central-dispersive
line shape. The amplification of the side bands is due to dressed
state population inversion [ 3], while the amplification of the central
dispersive-like structure is due to coherent population oscillation
as aresult of the superposition of pump and probe fields beating at
their frequency mismatch [4-6].

The damping of a 2-level atom driven by mono- or bi-chromatic
pump field in the presence of a non-resonant squeezed vacuum
(SV) reservoir has been recently analysed [7-9]. The correspond-
ing non-autonomous model Bloch equations have been treated
iteratively with arbitrary pump field strength. In particular, the
resonance fluorescence spectrum is studied in the mono- [7] and
bi-chromatic [8] cases. The absorption-dispersion spectra, in both
cases of mono- and bi-chromatic pump fields, was analysed in great
detail [9] with the purpose of identifying the regions of zero absorp-
tion (isolines) accompanied with finite or steep varied dispersion
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within the medium. This is related to the refractive index of the
medium and hence to the propagating speed of the probe (pulse)
field (see references in [9] concerning earlier studies in the normal
vacuum case).

The main purpose of the present work is to investigate the
possibility of amplifying the central component of the absorption
line-shapes for a strongly driven 2-level atom by: (i) monochro-
matic field and, (ii) bichromatic field in the presence of an SV
reservoir. The SV reservoir is considered non-resonant in case (i),
while in case (ii) it is considered both resonant and non-resonant.
Investigation of the central component of the absorption spec-
trum in the monochromatic driving case was given in [10] for
exact resonant SV reservoir. The paper is presented as follows. The
non-autonomous model of Bloch equations in both cases of mono-
and bi-chromatic driving cases are introduced in Sections 2 and
3, respectively, together with their Fourier decomposition treat-
ments and computational investigation of the central absorption
line-shapes. A summary is given in Section 4.

2. Monochromatic driven case

The c-number non-autonomous model of Bloch equations for a
single two-level atom driven by a strong monochromatic laser field
in the presence of an off-resonant SV field and a weak probe field
are of the form [9]:

ri= (T +iA)r, — [Mlee®r_ +(Q+ Qpe)r, (1a)
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ro=r.* (1b)
. 1 1 —ivt 1 ivt
T, =—§—2FTZ—§(Q+Qp€ )r+—§(§2+§2pe o, (1c)

wherer; , = 41 ..

The variables r. ,(t) are the mean atomic polarisation compo-
nents and inversion, respectively. The rest of the symbols in (1)
are: €2 is the (real) Rabi frequency associated with the strong field,
2p is the real Rabi frequency of the probe field, A =w; — w, is the
atomic detuning with w; and w, are the frequencies of the laser
field and atom respectively, v=wp — w, is the beating mismatch
frequency between the probe field (wp) and the laser field (o),
q=2(wc— wy) is the SV detuning parameter with w, is the central
(carrier) frequency of the SV field, I'=y(1+2N)/2 and y is the A-
coefficient. M=|M|e!? and N are the SV field parameters: N is the
average photon number and the (complex) M is a measure of degree
of squeezing and ¢ is the relative phase of the SV field with respect
to the laser field; |M| < 4/N(N + 1). For a resonant SV field (g =0),
Egs. (1) have been analysed in [10]. In general, Egs. (1) with non-
equal detuning parameters (q # v) are too lengthy to handle with
Fourier decomposition approach. Here, we specify the case of non-
resonant SV where g=v # 0 (hence, the results for resonant (g =0)
SV [10] cannot be obtained as a special case from our results).

To analyse the steady state central components of the absorp-

tion line-shape of the probe field (i.e. %, % « 1), we resort to
Fourier decomposition of (1) with g=v # 0 in the steady state
where 1} , = 0, up to the first harmonic in e*, Further, as long
as all higher harmonics e*3"t, ... are discarded we adopt a less
laboured approach of Fourier decomposition (c.f. [11,12] also [10])
as follows. First, we setr; = 0in(1a)and (1b)and then solve for ry
and in turn substitute the results into (1¢) to get the following:

ro= (I +iA)(Q + Qe ™'T) — M|e (), + Q’e—”’f)]rﬁz (2a)
=(rs) (2b)
dr 1 .
d—; =-3 — (Up + UcCOSV'T + Ug SIN V' T)17, (20)
where:

’ Q/ Q/ / Q/
u, =2I +ﬁ( [V — 28, |M| cos @)

Q/
Ue = ﬁ(ZF/Q;, — Q'|M| cos ¢)

IM|Q2? sin¢
Ug= ——7 17—
H
1
H= A/Z —
+ 7
with the normalised quantities: T = pt, IV = g Q= % Q)= %
and A’ = %.

In view of the harmonic coefficients in (2c), its solution in the
steady state can assume the following Fourier ansatz (up to first
harmonic eV'7);

iy i
;=00 +aye” " +a_ye VT, (4)

where the coefficients a, .,/ are time-independent. By substituting
Eq. (4) into Eq. (2¢), and comparing coefficients of equal harmonics
we get:

W +v?)
R TR G2
uc(ue —iv') —us(V' +iu N
ay = C( 0 ) S( O) :(a—v’) (5b)

4u0H1

where:

u? + u?
-
The effect of the steady state population oscillations (terms in a.., )

on the absorption line-shape can be seen by substituting Eq. (4)
into Eq. (2a) and obtain (up to 1st harmonics e*V'7):

Hy =2 +v?)— (5¢)

r_=bg+b_,e VT 4 b,elVT, (6)

where the coefficient (amplitude) of the harmonic term e=V'7, is
given by:

Aa_, + Ba,

b—u’ = H s (73)
while the non-harmonic term is given by:

_ Aa, + Ba,y
by = Tt (7b)
where:

A= (D' — M|, cos$) +i(A'QY + [M|S2 sing),

(8)
B =(I"Q2}, — IMIS2 cos @) +i(A'S2}, + IM|S2 sin ).

Amplification of the central (non-harmonic and first harmonic)
component amplitudes of the absorption line-shape, Im(b,) and
Im(b_,/), respectively, are shown for fixed strong and probe fields
(§'=10,€;, =0.5) and various system parameters in Fig. 1.
Here, in all cases the amplification of the non-harmonic com-
ponent is larger than that of the first harmonic component,
as follows:

(a) The variation against the (small central) probe detuning
VvV e (-1, 1) with rest of parameters kept fixed shows
that both components exhibit almost constant amplification
(Fig. 1a);

(b) For simultaneous variation of probe and atomic detun-
ing (V=AA’; |A|=10"3; |V|<1) both components exhibit
dispersive-like structure and the amplification is best shown
with SV parameters, N=0.1, ¢ =0 and for A’>0 (Fig. 1b). For
¢ =, the amplification is shown for A’ <0;

(c) The variation of the SV phase ¢ (Fig. 1c) shows that the non-
harmonic component is constantly amplified with A’=10 over
the whole interval, 0 < ¢ < 27, while the first harmonic compo-
nent is amplified over some interval of ¢ that depends on the
value of A’;

(d) Varying the SV average photon number N (Fig. 1d) shows
that the non-harmonic component with ¢=0 and A’=10
is best amplified with weak N~0.1, while the first har-
monic component is best amplified with ¢=2Z and
A’=0.

3. Bichromatic driven case

In the case where the driving strong field is a bichromatic
laser field of two frequency component w1, w,(w1 # w>), and of
equal constant amplitudes €2, the corresponding non-autonomous
Bloch equations for the mean atomic variables have the
form [9]:

r; = (D +iA)r; — IM[e?*eir_ —i(2Qcos 8t + Qpe)r,  (9a)

ro=r" (9b)

1

r, =—=

—2Tr, — i(Q2 cos(8t) + Qpe~"O)ry

+ i(2 cos(8t) + Qper_. (9¢)
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