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a  b  s  t  r  a  c  t

Amplification  of  absorption  spectrum  of  a weak  signal  probing  the system  of  a dissipative  single  2-level
atom  in  the  presence  of a broadband  squeezed  vacuum  (SV)  reservoir  and  driven  by  a  non-resonant
mono-  or  bi-chromatic  coherent  field  is investigated.  The  non-autonomous  model  Bloch  equations  yields
solutions  for  the  atomic  variables  of  all  harmonic  frequency  components,  exp(±in�t);  n  =  0,  1,  . .  . where
�  is  the  probe  frequency  detuning.  Amplification  of  the  fundamental  (n  =  0)  and  the  first  harmonic  (n  =  1)
frequency  components  associated  with  the  central  part  (|�| < 1) of  the  spectrum  is shown  with:  (i) simul-
taneous  change  of  atomic  and  probe  frequency  detunings,  and  (ii) change  of  SV phase  and  photon  number
parameters.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Absorption spectrum of a weak field probing a strongly
driven dissipative 2-level atom, as theoretically predicted [1] and
experimentally verified at optical frequencies [2], shows that
the absorption line-shape is amplified (i.e. negative absorption)
at the expense of the strong driving (pump) field in the vicinity of
the Rabi frequency side bands, together with a central-dispersive
line shape. The amplification of the side bands is due to dressed
state population inversion [3], while the amplification of the central
dispersive-like structure is due to coherent population oscillation
as a result of the superposition of pump and probe fields beating at
their frequency mismatch [4–6].

The damping of a 2-level atom driven by mono- or bi-chromatic
pump field in the presence of a non-resonant squeezed vacuum
(SV) reservoir has been recently analysed [7–9]. The correspond-
ing non-autonomous model Bloch equations have been treated
iteratively with arbitrary pump field strength. In particular, the
resonance fluorescence spectrum is studied in the mono- [7] and
bi-chromatic [8] cases. The absorption-dispersion spectra, in both
cases of mono- and bi-chromatic pump fields, was analysed in great
detail [9] with the purpose of identifying the regions of zero absorp-
tion (isolines) accompanied with finite or steep varied dispersion
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within the medium. This is related to the refractive index of the
medium and hence to the propagating speed of the probe (pulse)
field (see references in [9] concerning earlier studies in the normal
vacuum case).

The main purpose of the present work is to investigate the
possibility of amplifying the central component of the absorption
line-shapes for a strongly driven 2-level atom by: (i) monochro-
matic field and, (ii) bichromatic field in the presence of an SV
reservoir. The SV reservoir is considered non-resonant in case (i),
while in case (ii) it is considered both resonant and non-resonant.
Investigation of the central component of the absorption spec-
trum in the monochromatic driving case was given in [10] for
exact resonant SV reservoir. The paper is presented as follows. The
non-autonomous model of Bloch equations in both cases of mono-
and bi-chromatic driving cases are introduced in Sections 2 and
3, respectively, together with their Fourier decomposition treat-
ments and computational investigation of the central absorption
line-shapes. A summary is given in Section 4.

2. Monochromatic driven case

The c-number non-autonomous model of Bloch equations for a
single two-level atom driven by a strong monochromatic laser field
in the presence of an off-resonant SV field and a weak probe field
are of the form [9]:

r ·
+ = −(� + i�)r+ − |M|ei�e

iqt
r− + (� + �pei�t)rz (1a)
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r ·
− = r ·

+
∗ (1b)

r ·
z = −1

2
− 2�rz − 1

2
(� + �pe−i�t)r+ − 1

2
(� + �pei�t)r−, (1c)

where r ·±,z = d
dt r±,z .

The variables r±,z(t) are the mean atomic polarisation compo-
nents and inversion, respectively. The rest of the symbols in (1)
are: � is the (real) Rabi frequency associated with the strong field,
�p is the real Rabi frequency of the probe field, � = ωl − ωo is the
atomic detuning with ωl and ωo are the frequencies of the laser
field and atom respectively, � = ωp − ωl is the beating mismatch
frequency between the probe field (ωp) and the laser field (ωl),
q = 2(ωc − ωl) is the SV detuning parameter with ωc is the central
(carrier) frequency of the SV field, � = �(1 + 2N)/2 and � is the A-
coefficient. M = |M|e1� and N are the SV field parameters: N is the
average photon number and the (complex) M is a measure of degree
of squeezing and � is the relative phase of the SV field with respect
to the laser field; |M|  ≤

√
N(N + 1).  For a resonant SV field (q = 0),

Eqs. (1) have been analysed in [10]. In general, Eqs. (1) with non-
equal detuning parameters (q /= �) are too lengthy to handle with
Fourier decomposition approach. Here, we specify the case of non-
resonant SV where q = � /= 0 (hence, the results for resonant (q = 0)
SV [10] cannot be obtained as a special case from our results).

To analyse the steady state central components of the absorp-
tion line-shape of the probe field (i.e. �p

� , �
� � 1), we  resort to

Fourier decomposition of (1) with q = � /= 0 in the steady state
where r ·±,z = 0, up to the first harmonic in e±i�t. Further, as long
as all higher harmonics e±3i�t, . . . are discarded we  adopt a less
laboured approach of Fourier decomposition (c.f. [11,12] also [10])
as follows. First, we set r ·± = 0 in (1a) and (1b) and then solve for r±
and in turn substitute the results into (1c) to get the following:

r− = [(�′ + i�′)(�′ + �′
pe−i�′	) − |M|e−i�(�′

p + �′e−i�′	)]
rz

H
(2a)

= (r+)∗ (2b)

drz

d	
= −1

2
− (uo + uc cos �′	 + us sin �′	)rz, (2c)

where:

uo = 2�′ + �′

H
(�′�′ − 2�′

p|M|  cos �)

uc = �′

H
(2�′�′

p − �′|M|  cos �)

us = |M|�′2 sin �

H

H = �′2 + 1
4

,

(3)

with the normalised quantities: 	 = �t, �′ = �
� , �′ = �

� , �′
p = �p

�

and �′ = �
� .

In view of the harmonic coefficients in (2c), its solution in the
steady state can assume the following Fourier ansatz (up to first
harmonic e±i�′	):

rz = ao + a�′ ei�′	 + a−�′ e−i�′	, (4)

where the coefficients ao,±�′ are time-independent. By substituting
Eq. (4) into Eq. (2c), and comparing coefficients of equal harmonics
we get:

ao = − (u2
o + �′2)
2uoH1

(5a)

a�′ = uc(uo − i�′) − us(�′ + iuo)
4uoH1

= (a−�′ )∗ (5b)

where:

H1 = (u2
o + �′2) − u2

c + u2
s

2
.  (5c)

The effect of the steady state population oscillations (terms in a±�′ )
on the absorption line-shape can be seen by substituting Eq. (4)
into Eq. (2a) and obtain (up to 1st harmonics e±i�′	):

r− = b0 + b−�′ e−i�′	 + b�′ ei�′	, (6)

where the coefficient (amplitude) of the harmonic term e−i�′	, is
given by:

b−�′ = Aa−�′ + Bao

H
, (7a)

while the non-harmonic term is given by:

bo = Aao + Ba�′

H
, (7b)

where:

A = (�′�′ − |M|�′
p cos �) + i(�′�′ + |M|�′

p sin �),

B = (�′�′
p − |M|�′ cos �) + i(�′�′

p + |M|�′ sin �).
(8)

Amplification of the central (non-harmonic and first harmonic)
component amplitudes of the absorption line-shape, Im(bo) and
Im(b−�′ ), respectively, are shown for fixed strong and probe fields
(�′ = 10,  �′

p = 0.5) and various system parameters in Fig. 1.
Here, in all cases the amplification of the non-harmonic com-
ponent is larger than that of the first harmonic component,
as follows:

(a) The variation against the (small central) probe detuning
�′ ∈ (−1, 1) with rest of parameters kept fixed shows
that both components exhibit almost constant amplification
(Fig. 1a);

(b) For simultaneous variation of probe and atomic detun-
ing (�′ = 
�′; |
| = 10−3; |�′| < 1) both components exhibit
dispersive-like structure and the amplification is best shown
with SV parameters, N = 0.1, � = 0 and for �′ > 0 (Fig. 1b). For
� = �, the amplification is shown for �′ < 0;

(c) The variation of the SV phase � (Fig. 1c) shows that the non-
harmonic component is constantly amplified with �′ = 10 over
the whole interval, 0 ≤ � ≤ 2�, while the first harmonic compo-
nent is amplified over some interval of � that depends on the
value of �′;

(d) Varying the SV average photon number N (Fig. 1d) shows
that the non-harmonic component with � = 0 and �′ = 10
is best amplified with weak N � 0.1, while the first har-
monic component is best amplified with � = �

2 and
�′ = 0.

3. Bichromatic driven case

In the case where the driving strong field is a bichromatic
laser field of two  frequency component ω1, ω2(ω1 /= ω2), and of
equal constant amplitudes �,  the corresponding non-autonomous
Bloch equations for the mean atomic variables have the
form [9]:

r ·
+ = −(� + i�)r+ − |M|e2ikıtei�r− − i(2� cos ıt + �peivt)rz (9a)

r ·
− = r ·

+
∗ (9b)

r ·
z = −1

2
− 2�rz − i(� cos(ıt) + �pe−ivt)r+

+ i(� cos(ıt) + �peivt)r−. (9c)
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