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Aiming  at  handling  the track  imprecision  caused  by  inertial  lag,  model  uncertainties  and  atmospheric
environment  disturbances,  as  well  as  stochastic  noises,  a  terminal  guidance  law  based  on  stochastic  fast
smooth  second-order  sliding  modes  control  theory  is proposed.  This  paper considers  targets  performing
evasive  maneuvers  and develops  a high-order  sliding  mode  observer.  A concept  of  finite-time  mean-
square  practical  convergence,  considering  the non-equilibrium  additive  noise  of the guidance  system,
is  presented.  And  according  to this  concept,  the finite-time  convergent  guidance  law  is  deduced.  The
feasibility  of  the new  guidance  law  is exemplified  through  computer  simulations  and  the  guidance  per-
formance  is  compared  with  augmented  proportional  navigation  guidance  law,  sliding  mode  guidance
law  and  nonsingular  terminal  sliding  mode  guidance  law.
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1. Introduction

An important criterion of a homing missile is the tracking accu-
racy, which is closely related to guidance, navigation, and control
crucially [1]. To achieve higher guidance precision against ever-
increasing performance targets, the line-of-sight (LOS) rate needs
converge to zero fast, which makes the terminal trajectory straight
and the normal acceleration of the missile small. However, due to
the missile seeker detection lag, guidance update rate limitation,
missile rudder inertial delay, model uncertainties and atmospheric
environment disturbances [2], the LOS rate cannot be converge to
zero within a short time.

A series of sliding mode control (SMC) algorithms has being
devoted to design the homing missile guidance law due to its
advantages of handling bounded uncertainties, disturbances and
unmolded dynamics [3]. The SMC  guidance law achieved smaller
acceleration ratio compared to traditional proportional navigation
(PN) and augmented proportional navigation (APN) guidance laws
[4,5]. However, classical SMC  cannot ensure the LOS rate converge
to zero in finite-time [6]. So Zhou presented a new guidance law
based on SMC  that can guarantee the LOS rate converge to zero
or its small neighborhood in finite-time [7]. Whereas, the guid-
ance law designed in the framework of first-order SMC  requires
the system relative degree equal to 1 with respect to the sliding
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variable and the controller yields a heavy chattering [8–10]. And in
Ref. [8–10], to deal with the intrinsic difficulties of classical SMC,
the high-order sliding mode (HOSM) controllers are presented. A
new smooth second-order sliding mode (SSOSM) control driven by
uncertain sufficiently smooth disturbances is proposed and proved
by Shtessel [11,12]. The main limitations of this guidance law are
the simplification of the state noise and the dependences of the
perfect knowledge of the range to target and the range rate, which
is usually hard to get an accuracy value. Another limitation of this
method is the specific requirement of the target normal accelera-
tion.

In order to solve the defects in previous research, a novel
stochastic fast smooth second-order sliding mode (SFS-SOSM)
method with a finite-time convergence in the presence of eva-
sive target maneuvers, uncertainties, disturbances and stochastic
noise, is proposed in this paper. A new concept of finite-time
mean-square practical (FTMSP) stability is introduced to investi-
gate the finite-time convergence of the stochastic sliding surface
and the FTMSP convergence of SFS-SOSM control is proved by Itô’s
formula.

The paper is organized as follows: Section 2 states the missile-
target engagement kinematics. The SFS-SOSM control algorithm is
derived and its FTMSP convergence is proved in Section 3. In Section
4, a smooth guidance law based on SFS-SOSM is presented and its
performance is verified via computer simulations compared with
augmented proportional navigation guidance law (APN), sliding
mode guidance law (SMG) and nonsingular terminal sliding mode
guidance law (NT-SMG) in Section 5.
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Fig. 1. Typical planar engagement geometry.

2. Planar engagement model and intercept strategy

2.1. Problem formulation

Consider the planar homing case that the missile moves within
the vertical plane, a typical engagement scenario is presented in
Fig. 1.

The planar missile-target engagement kinematics can be easily
derived as{

ṙ = VT cos(q − �T ) − VM cos(q − �M)

rq̇ = −VT sin(q − �T ) + VM sin(q − �M)
(1)

where q is the LOS angle, r is the range along LOS, VT and VM are
target velocity and missile velocity, �T and �M are target aspect
angle and missile lead angle.

The eq. (1) can be reduced by differentiating both sides of the
second equation with respect to time and substituting the first
equation into it leads to the following equation

q̈ = −2ṙ

r
q̇ − 1

r
aM + 1

r
aT (2)

where aM is missile normal acceleration as a control input, aT is
target normal acceleration that is considered as unknown bounded
disturbance. Denote ω = q̇ as the LOS rate, Eq. (2) becomes the
following equation

ω̇(t) = −2ṙ(t)
r(t)

ω(t) − 1
r(t)

aM + 1
r(t)

aT (3)

where the starting time of the guidance process is taken to be
zero, ω is an uncertain sufficiently smooth function. Assume that
the state noise �(t) is a zero-mean white Gaussian process with
covariance Q(t), Eq. (3) can be rewritten as

ω̇(t) = −2ṙ(t)
r(t)

ω(t) − 1
r(t)

aM + 1
r(t)

aT + �(t) (4)

2.2. Intercept strategy

It is well known that in the space interception where a missile
is intercepting a target with maneuverability, the time of termi-
nal guidance is only several seconds such that the guidance law
is required to ensure finite time convergence of the LOS angular
rate [7,13]. To ensure finite time convergence of the LOS angular
rate, the guidance law is derived to stabilize the system (4) on the
manifold

� = ω(t) + �

∫ t

0

ω(�)d� (5)

where � = const . >0.

Differentiating both sides of Eq. (5) with respect to time, we
arrive at the following equation

�̇ = ω̇ + �ω =
(

� − 2ṙ

r

)
ω − 1

r
aM + 1

r
aT + � (6)

The guidance command can be obtained by employ SFSSOSM
control, which is derived and analyzed in the next section.

3. Stochastic fast smooth second-order sliding mode
control

It is obvious that system (6) is driven by additive noise, mean-
ing that the equation doesn’t have any equilibrium [15]. Instead of
convergence to the origin, the more reasonable way is to stabilize
� to a small neighborhood of zero in finite time [7,14]. Practical
stability, proposed by La Salle and Lefschetz [16], is motivated by
the fact that the state of a physical system may  be mathematically
unstable, but it operates sufficiently near the desired state. With
the aid of this concept, a new concept of FTMSP convergence is
introduced first, and then the SFS-SOSM control is derived and its
FTMSP convergence is proved in this section.

3.1. Finite-time mean-square practical stability

The definition of practical stability given in [14] is extended to
a stochastic nonlinear system as follows.

Definition (FTMSP convergence): Denote x(t) the solution pro-
cess of system (4) under the initial condition x(t0) = x0. The sliding
surface � = �(x(t)) = 0 is called finite-time mean-square practical
(FTMSP) convergent if, given real number pair ı, ε > 0 satisfying
certain conditions, there exists a finite setting time T ≥ 0, which is

dependent on x0, such that E
∥∥�(t0)

∥∥2 ≤ ı implies E
∥∥�(t)

∥∥2 ≤ ε for
any t − t0 > T.

It follows from the above definition that the E
∥∥�(t)

∥∥2
is suffi-

ciently close to zero in finite-time if the sliding surface is FTMSP
convergent.

3.2. Prescribed sliding variable dynamics

On the ground of the smooth second-order sliding mode (SOSM)
control proposed by Shtessel [11], an extended stochastic fast
smooth SOSM (SFS-SOSM) control can be deprived and the dynam-
ics of the sliding variable � is designed to have the following form:{

	̇1 = −k1
∣
	1

∣(m−1)/msgn(	1) − k2	1 − k3
∣
	2

∣
sgn(	1) + (ω − z1) + �

	̇2 = −k4
∣
	1

∣(m−2)/msgn(	2) − k5	2

(7)

where 	1 = �, m = const . >2, ki = const . >0 (i = 1, 2, 3, 4, 5), � is the
noise signal mentioned in Eq. (4).

Let � = [	1, 	2]T, then Eq. (7) is a stochastic system with respect
to state � and can be represented as

d� = f (�)dt + gdW(t) (8)

where W(t) is a 1-dimensional standard Brownian motion and f, g
are

f (�) = −k1

∣∣	1

∣∣(m−1)/m
sgn(	1) − k2	1 − k3

∣∣	2

∣∣ sgn(	1)

−k4

∣∣	1

∣∣(m−2/m)
sgn(	2) − k5	2

g =
[√

Q

0

] (9)

System (8) is a stochastic nonlinear system with additive noise.
Hereafter, FTMSP convergence is employed to analyze the finite-
time convergence of system (8).
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