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a  b  s  t  r  a  c  t

This letter  investigates  the  complex  dynamical  behaviors  of  a three-dimensional  continuous  autonomous
system  which  is  described  as ẋ  =  ax − yz, ẏ = −by +  xz, ż = −cz  + x2. Some  new  results  are  presented  by
further  research.  The  chaos  and  bifurcation  of  the  system  are  analyzed.  It  proves  that  the  system  occurs
double  Hopf  bifurcation  at the  equilibria.  Also,  study  shows  that  the  system  coexist  multiple  attractors
including  point  attractors,  periodic  attractors  and chaotic  attractors.  Electronic  circuit  is  also  designed
for  realizing  the  chaos  of the  system.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The research of the low-dimensional ordinary differential
autonomous system is of great significance. It is widely accepted
that the three-dimensional continuous system with quadratic
nonlinearities usually has complex dynamical behaviors, includ-
ing chaos, bifurcation, multistability, coexisting attractors, etc.
The chaos is a very important phenomenon which is charac-
terized by the highly sensitivity to the initial conditions. There
are many examples of three-dimensional systems that perform
chaotic behavior [1–8]. One notable example is the Lorenz system
described by ẋ = my − mx, ẏ = nx − y − xz, ż = xy − pz,  which has
two nonlinear terms and five linear terms [9]. Since the discovery
of the Lorenz system, the study of chaos has been in vogue. Bifurca-
tion and chaos are always inseparable. The bifurcation is regarded
as an essential factor to cause chaos. If a small smooth change
of the system parameters yields a topological change in system
behaviors, then we may  say the system occurs a bifurcation. Three-
dimensional continuous systems often appear different types
of bifurcation, including fold bifurcation, flip bifurcation, pitch-
fork bifurcation and Hopf bifurcation [10–13]. Many researchers
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follow awfully with interest the analysis of chaos and bifurcation in
recent years. The coexisting attractors is a dynamic behavior which
is closely related to the initial condition of the system. For given
system parameters, the state of the system changes along with the
initial condition changes. The point attractors, periodic attractors,
chaotic attractors and other types of attractors may simultaneously
produce in a system. Some simple three-dimensional systems have
been shown to have multiple attractors, see Refs. [14–17]. The study
of the coexisting attractors has been gradually carried out by scho-
lars.

This paper aims to reveal the complex dynamical behaviors of
a three-dimensional continuous autonomous system presented in
Refs. [18,19]. By further research, some new results of the sys-
tem are presented. The chaotic attractor of the system is analyzed
by numerical simulation and realized by electronic circuit. The
Hopf bifurcation of the system is analyzed in detail. Double Hopf
bifurcation are occurs in a pair of equilibria of the system as the
parameter changes. Surprisedly, the coexisting attractors is found
to exist in the system. Simulations intuitively show the coexisting
attractors.

The paper is organized as follows. In Section 2, the model
of the system and the stability of the equilibria are presented.
In Section 3, the existence of Hopf bifurcation is proved. In
Section 4, the dynamic evolution and the coexisting attractors
are numerically given. In Section 5, the circuit implementation
of the system is investigated. Finally, conclusions are stated in
Section 6.
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2. System description

The mathematical model of the three-dimensional system pro-
posed in Refs. [18,19] is described as follows:⎧⎨
⎩

ẋ = ax − yz,

ẏ = −by + xz,

ż = −cz + x2.

(1)

where x, y, z are state variables, a, b, c ∈ R+ are constant param-
eters. The system (1) has three quadratic nonlinearities, and the
nonlinearities are the main cause of chaos and bifurcation in the
system (1). For a = 6, b = 12, c = 4, system (1) has a chaotic attrac-
tor as shown in Fig. 1. The corresponding Lyapunov exponents
are calculated numerically as LE1 = 0.7286, LE2 = 0, LE3 = −10.7286.
Accordingly, the Lyapunov dimension of system (1) is fractional as
given by DL = 2 − LE1/LE3 = 2.0679. It is obvious that the attractor in
system (1) is chaotic under parameters a = 6, b = 12, c = 4.

Let ẋ = ẏ = ż = 0, then three equilibria of the system (1) are
obtained as

O(0, 0, 0),  Q1( 4√
abc2, 4

√
a3c2/b,

√
ab),

Q2(− 4√
abc2, − 4

√
a3c2/b,

√
ab).

The eigenvalues of Jacobian matrix at O are �1 = a, �2 =− b, �3 = −c.
Since �1 = a > 0, then O is an unstable point. The Jacobian matrix of
system (1) at Qi(i = 1, 2) is

J1 =

⎛
⎝ a −z −y

z −b x

2x 0 −c

⎞
⎠ ,

The characteristic equation of J1 is

�3 + (b + c − a)�2 + (a + b)c� + 4abc = 0, (2)

According to the Routh–Hurwitz criterion, Qi(i = 1, 2) is stable under
the following conditions:{

b + c − a > 0,

b2 − 4ab − a2 + (a + b)c > 0.

In [18], the authors investigated some basic dynamic behav-
iors of system (1) by theoretical analysis and numerical simulation
only for a given system parameters. In [19], the authors applied
the simulation method including phase portraits, bifurcation dia-
gram, Lyapunov exponent spectrum, Poincaŕe map  for considering
the dynamics of the system (1). The nonlinear amplitude adjuster,
phase reversal and modulation factor are also numerically ana-
lyzed. In this presented paper, we will give a detailed and deeper
description of the dynamic behaviors of the system (1). The chaotic
behavior, Hopf bifurcation, coexisting attractors are considered.
Electronic circuit on the Multisim software is designed for realizing
the chaotic attractor of the system (1).

3. Hopf bifurcation

Here we will investigate the Hopf bifurcation at equilibrium
Qi(i = 1, 2). Assume that the Eq. (2) has a pure imaginary root � = �i,
� > 0, then

(�i)3 + (b + c − a)(�i)2 + (a + b)c�i + 4abc = 0.

Separating the real part and the imaginary part of the above equa-
tion, one has{

(a + b)c − �2 = 0,

4abc − (b + c − a)�2 = 0,
(3)

and⎧⎨
⎩

c0 = a2 + 4ab − b2

a + b
,

�0 =
√

a2 + 4ab − b2,

(4)

So the Eq. (2) exists a root � = �i, � > 0 as long as a2 + 4ab − b2 > 0.
Differentiating Eq. (2) with respect to c, then

d�

dc
= − �2 + (a + b)� + 4ab

3�2 + 2(b  + c − a)� + (a + b)c
,

and

Re
(

d�

dc

)
|c=c0,�=�0i = − (a + b)(a2 + 4ab − b2)

2(a  + b)(a2 + 4ab − b2) + 8ab
< 0. (5)

Hence, by the Hopf bifurcation theory proposed in Refs. [20,21],
system (1) undergoes a Hopf bifurcation at Qi when c = c0. By com-
puting the first Lyapunov coefficient defined by Kuznetsov [21], we
can give more detailed description of the Hopf bifurcation of sys-
tem (2). For simplicity, we assume b = 3a. So we just need to analyze
the Hopf bifurcation on the line c = a, b = 3a except the origin point.

Let Cn is a linear space defined on the complex number field C.
For X = (x1, x2, . . .,  xn)T, Y = (y1, y2, . . .,  yn)T with xi, yi ∈ C(i = 1, 2, . . .,
n), 〈X, Y〉 =

∑n
i=1x̄iyi is defined as the inner product of X, Y. Consider

the nonlinear system as follows:

Ẋ = AX + F(X), (6)

where F(X) is described as

F(X) = 1
2

S(X, X) + 1
6

M(X, X, X) + o(‖x‖4), (7)

where
∥∥X

∥∥ =
√

〈X, X〉, S(X, X) and M(X, X, X) are bilinear and tri-
linear functions. Suppose �1,2 = ±ωi, ω > 0 are the only pair of pure
imaginary eigenvalues of A, v is a eigenvector respect to eigenvalue
�1, then Av = iωv, Av̄ = −iωv̄. Let u is a adjoint eigenvector with
AT u = −iωu, AT ū = iωū,  〈u, v〉 = 1. According to the Ref. [21], the
first Lyapunov coefficient is given by

f0 = 1
2ω

Re
[
〈u, M(v, v, v̄)〉 − 2〈u, S(v, A−1S(v, v̄))〉

+ 〈u, S(v̄, (2iωI − A)−1S(v, v))〉
]

. (8)

The Jacobian matrix at Q1 is rewritten as

A =

⎛
⎝ a −

√
3a − 4

√
1/3a√

3a − 3a 4√3a
4√48a 0 − a

⎞
⎠ , (9)

The eigenvalues of A are �1,2 = ±2ai, �3 = −3a. The corresponding
vectors u, v with Av = i2av, ATu = −i2au of A are given as

v =

⎛
⎜⎜⎜⎜⎝

2i + 1

2 4√3
4√3
2

1

⎞
⎟⎟⎟⎟⎠ , u =

⎛
⎜⎜⎜⎜⎜⎜⎝

4√3i

2
√

3 4√3(2 − 3i)
26

5 − i

13

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From system (1), the bilinear and trilinear functions are

S(Y, Y ′) =

⎛
⎜⎝

−yz′

xz′

xx′

⎞
⎟⎠ , M(Y, Y ′, Y ′′) =

⎛
⎝ 0

0

0

⎞
⎠ ,

where Y = (x, y, z)T , Y ′ = (x′, y′, z′)T , Y ′′ = (x′′, y′′, z′′)T .
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