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a  b  s  t  r  a  c  t

In this  paper,  Haar  wavelets  method  (HWM)  is applied  to compute  the  numerical  solutions  of  the  foam
drainage  equation.  The  mathematical  base  of the  method  is  presented.  First,  the  time  derivative  is dis-
cretized  by  a  forward  difference  scheme  and  then  a  quasilinearization  technique  is used  to linearize  the
foam drainage  equation.  Finally,  we  solve  a system  of  linear  equations  which  is  obtained  by applying  the
Haar  wavelet  method  for discretizing  the  space  derivatives.  Obtained  results  by  HWM  are  very  similar  to
the exact  solutions.  Further,  a comparison  between  our  results  and  results  which  are  obtained  by  HPM,
HPTM,  LDM  and  ADM is  presented.  Numerical  results  show  that  our method  works  better  than  the  other
methods.
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1. Introduction

One of the interesting and applicable partial differential equa-
tions is the foam drainage problem. The governing equation of this
problem is expressed as follows
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where � is the cross section of a channel formed where three films
meet which usually indicated as Platean border,  x and t are scaled
position and time coordinates, respectively. A complex fluid or a
liquid foam is an example of a soft matter with a well-defined
structure. Joseph Platean, for the first time, clearly described such
structures in the 19th century.

Foams are very well known for both common people and scien-
tists, because of their everyday utilization [1,2]. They are common
in food and personal care products such as creams, lotions, etc and
foams are often are used during scrubbing and clothes cleaning [3].
One may  find many applications of foams in mineral processing,
fire fighting, food, chemical industries and structural material
sciences in Ref. [4]. Anybody has everyday direct contact with
foams. Washing dishes, shampooing hair, eating chocolate bars and
chocolate mouses desserts are only a few examples. From above
applications one can see the great importance of foams in many
technological processes and their properties which have intensive
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studies from scientific and practical point of view. This is why foams
have been of great interest for academic researches. Some popu-
lar mentioned applications include the use of foams for reducing
the impact of explosions and for cleaning up oil spins. There are
now many applications of polymetric foam [5] and more recently
metallic foams which are foams made of metals such as aluminum
[6]. Polymetric foams are used in cushions, structural materials
and packing [5]. Ceramic, glass and metal foams can also be made,
for more details see e.g. [7]. Uniformity of the foam is important
for designers who  interested in these applications. Gravitational
drainage of the liquid is one mechanism leading to nonuniformity.
Resent researches on foams have centered on three topics which are
often treated separately, but are, interdependent. These topics are
drainage, coarsening and rheology. Here, we concentrate on a quan-
titative description of the coupling of drainage. The flow of liquid
through the liquid-filled channels, which are called Plateau borders,
and intersections of four channels between the bubbles, driven by
gravity and capillarity is called foam drainage. Foam drainage has a
very important role in foam stability. For example in drying process
of a foam, its structure becomes fragile [8]. In spite of many appli-
cations and numerous scientific investigations of properties and
mechanics of foams, dynamics of foam drainage has only recently
been examined in detail [9–11]. Also there are another researches to
handle the foam drainage equation. Helal and Mehanna [12] used
the Adomian decomposition method (ADM) and tanh method to
handle the foam drainage equation. Darvishi and Khani [13] pre-
sented a series solution of the foam drainage equation by homotopy
analysis method. Khani et al. [14] used the exp-function method
to obtain some new solitary wave and periodic solution for the
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problem. Mirmoradi et al. [15] applied the variational iteration
method (VIM) to solve the foam drainage equation.

Fereidoon et al. [16] applied homotopy perturbation method
(HPM) to obtain semi-analytical solutions for the foam drainage
equation. Darvishi et al. [17] obtained some traveling wave solu-
tions for the foam drainage equation by modified F-expansion
method. Khan [18] applied the Homotopy perturbation transform
method (HPTM) for solving the foam drainage equation. Khan and
Gondal [19] using Laplace decomposition method (LDM) obtained
numerical solutions for the foam drainage equation.

In recent years the wavelets have been used for the solu-
tion of partial differential equations (PDEs). Different types of
wavelets and approximating functions have been used in numer-
ical solution of differential equations. The Haar wavelets method
(HWM)  is the most simple one among the different wavelet fam-
ilies which are defined by an analytical expression. Due to its
simplicity, HWM  is very effective to solve ordinary and partial
differential equations. The notion of wavelets is introduced by
Alfred Haar in 1910. Expression of Haar wavelets is very simple.
Besides they have orthogonal and normalization with compact
support properties. Therefore, the Haar wavelets are very effi-
cient and effective tools to solve the nonlinear systems in physics,
biology, chemical reactions and fluid mechanics, for more details,
see [20–25].

In this paper, we use the HWM  to obtain a semi-analytical solu-
tion for the foam drainage equation. In this composite scheme, first
of all, we discretize time derivative terms by a forward difference
scheme and linearize the nonlinear terms using a quasilineariza-
tion technique [26] to reduce the original equation into a system of
ordinary differential equations. Then we apply the Haar wavelets
method which leads to a system of algebraic equations. To solve the
system of algebraic equations we use the solve package in Maple
16.00.

This paper is organized as follows: In the next section we  present
a brief introduction on preliminaries of Haar wavelets and its
integrals. Section 3 describes the quasilinearization technique for
nonlinear terms. Convergence of method is discussed in Section 4.
In Section 5, Haar wavelets method is used for solving the foam
drainage equation. Numerical results are presented in Section 6
which Eq. (1) with two different initial conditions is solved. Finally,
the paper in concluded in Section 7.

2. Haar wavelets

The Haar wavelets family {hi(x)} is defined as a group of ortho-
gonal square waves with magnitude ± 1 in some intervals and zero
elsewhere as follows

hi(x) =

⎧⎪⎨
⎪⎩

1 x ∈ [�1, �2),

−1 x ∈ [�2, �3),

0 otherwise,

(2)

where the notations �1 = k
m , �2 = k+0.5

m , �3 = k+1
m are introduced.

The integer m = 2j, (j = 0, 1, . . .,  J) indicates the level of the wavelets,
where J is the maximal level of resolution and k = 0, 1, . . .,  m − 1
is the translation parameter. The subscript i can be expressed as
i = m + k + 1, such that in the case of m = 1, k = 0 we have i = 2; the
maximal value of i is i = 2 M = 2J+1. For i = 1, the function h1(x) is a
scaling function for the family of the Haar wavelets as

h1(x) =
{

1 x ∈ [0,  1),

0  otherwise.

We  introduce the following notations; for i > 1

Pi,1(x) =
∫ xl

0

hi(x) dx, (3)

Pi,n+1(x) =
∫ x

0

Pi,n(x) dx, n = 1, 2, . . . (4)

where for l = 1, 2, . . .,  2M, xl = l−0.5
2M are the collocation points. By

using Eqs. (2) and (4) we  have
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(5)

It is well-known that any integrable function u(x) ∈ L2 [0, 1) can
be expanded by a Haar series with an infinite number of terms as
follows

u(x) =
∞∑
i=1

ai hi (x). (6)

The above series terminates at finite terms if u(x) is a piecewise
constant or can be approximated as a piecewise constant function
during each subinterval, then u(x) will be terminated at finite terms,
i.e.,

u(x) =
2M∑
i=1

ai hi (x) = aT(2M) h(2M)(x), (7)

where the coefficients aT(2M) and the Haar function vector h(2M)(x)
are defined as

aT(2M) = [a1, a2, . . .,  a2M]

h(2M)(x) = [h1(x), h2(x), . . .,  h2M(x)]T ,

where superscript T shows the transpose operator and M = 2J.

3. Quasilinearization

The quasilinearization approach [26] is a generalized
Newton–Raphson technique for functional equations. It con-
verges quadratically to the exact solution. Also, if there is a
convergence at all, it has a monotonic convergence.

Consider the nonlinear nth order differential equation

Lnu(x) = f (u(x), u′(x), . . .,  un−1(x), x). (8)

Application of quasilinearization technique to (8) yields

Lnur+1(x)

= f (ur(x), u′
r(x), . . .,  un−1

r (x), x)

+
n−1∑
j=0

(ujr+1(x) − ujr(x)) fuj (ur(x), u′
r(x), . . .,  un−1

r (x), x), (9)

with the initial and boundary conditions at (r + 1)th iteration, where
n is the order of the differential equation. Eq. (9) is always a linear
differential equation and can be solved recursively, where ur(x) is
known and one can use it to get ur+1(x).
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