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constructed so that they establish the globally asymptotical stability of the closed-loop at the origin.
Subsequently, suitable adaptive laws of unknown parameters are designed to identify the unknown
parameters. Finally, the effectiveness of the proposed reduced-order synchronization approach is verified
by numerical simulations. A brief comparison of the present study with prior works has been given.
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1. Introduction

The study presented by Pecorra and Carroll [1] gave a criterion for the complete synchronization of two nearly identical chaotic sys-
tems. Since, then, synchronization research has rapidly developed owing to several potential applications [2-4]. For the last two decades,
synchronization of chaotic systems has widely been addressed in different scientific disciplines on the basis of theoretical investigations
and experimental studies [5,6]. Subsequently, several effective chaos based synchronization control techniques and methods have been
developed. These include, adaptive control [6], sliding mode control [7], linear active control [8], linear feedback control [9], the hybrid
projective synchronization [10], backstepping method [11] and the lag synchronization [12], etc.

Till now, there are two types of synchronization has been discussed, namely, synchronization between chaotic systems with the same
orders and synchronization between chaotic systems with different orders. In the latter case, synchronization can be further classified into
two basic categories termed as increased-order synchronization and reduced-order synchronization (ROS) [13]. In ROS scheme, the order
of the controlled slave/response is less than that of the master/drive system such that the slave system is forced to track the geometrical
properties of the projection part of the master system [14]. The ROS phenomena can be observed in many physical and natural systems
due to the fact that the components of certain complex systems cannot supposed to be identical or of the same orders [15]. The ROS
have potential applications in physical, social, information processing, and biological systems [16]. The ROS of chaotic systems has been
investigated by some researchers [14-19] (cited here among others).

The effect of time-delay on nonlinear dynamical systems is quite noteworthy. The memory effect and the finite signal transmission
speeds are the bases of time-delays [20]. Time-delays chaotic/hyperchaotic systems exhibit multistability and can produce more complex
dynamics that enhances the security of the transmitted data. The synchronization of time-delay chaotic systems has attracted a great
interest in the literature concerned [21,22]. Because of the signal propagation delays, it is not reasonable to require the slave system to
synchronize the master system at the same time [22]. Thus, the time-delay plays an important role in chaotic synchronization. To the best
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Fig. 1. 3D phase portrait of the (a) LSH system and, (b) SM chaotic system.
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Fig. 2. (a) Time series of the chaotic trajectories (LSH). (b) Time series of the chaotic trajectories (SM).

of the authors’ knowledge, no attempt has been made for the ROS of time-delay chaotic systems because of computational and structural
difficulties in the controller design and this has remained as an open problem.

To deal with the stability analysis and less conservative conditions in combination with different kinds of perturbations and time-
delays, the authors present a novel contribution to this line. Based on the Lyapunov-Krasovskii functional theory [23], a nonlinear feedback
controlleris addressed and sufficient algebraic conditions are derived to achieve the globally asymptotical ROS of time-delay chaotic systems
with the presence of unstructured uncertainties and unknown external disturbance under the determined parameters. Furthermore, in
practical applications, some or all of the system’s parameters cannot be exactly known in advance. Therefore, to tackle the analytical
complications produced by the parameters uncertainties, the adaptive based synchronization controller and analytic expression for the
controller and adaptive laws of unknown parameters are developed. Numerical experimental results depicted graphically show that the
proposed control strategy is robust against different kinds of perturbations and the time-delay. The unknown parameters with different
numerical values are identified with high accuracy. Thus, the proposed controller design is effective, reliable, and convenient to implement
for real world applications.

The outline of the paper is as follows. In Section 2, description of the time delay Lorenz-Stenflo hyperchaotic (LSH) [24] and time-delay
Shimizu-Morioka (SM) [25] chaotic systems are given and solved the problem of ROS between the time-delay LSH and time delay SM
systems under the determined parameters. In Section 3, the adaptive control strategy for the ROS between the time-delay unknown LSH
and time-delay unknown SM chaotic systems are obtained. Finally, the concluding remarks are given in Section 4.

2. Reduced-order synchronization between the time-delay Lorenz-Stenflo hyperchaotic and time-delay Shimizu-Morioka
chaotic systems under the determined parameters

2.1. Description of the Lorenz-Stenflo hyperchaotic system

Stenflo [25] proposed and investigated a new hyperchaotic system which is now known as the famous Lorenz-Stenflo hyperchaotic
system. The new hyperchaotic attractor was basically coined by adding a fourth variable and a new control parameter d to the original
Lorenz system. The LSH system was basically derived from measuring the low-frequency, short wavelength wave perturbation in Acoustic-
Gravity waves in the atmosphere. The proposed model also has been used to describe high-latitude phenomena [26]. The mathematical
model of the LSH system is described as follows:

x1(t) = a(xa(t) — x1(t)) + bx4(t)
X2(t) = cx1(t) — xa(t) — X1 (£)x3(t)
X3(t) = —dx3(t) + x1(t)x(t)

X4(t) = —x1(t) — ax4(t)

(1)

where [x1(t), X2(t), x3(t), x4(t)]T € R4, are the state vectorsand a>0, b >0, c>0,d > 0, are the control parameters of the system that represents
the Rayleigh number, Prandtl number, rotation number and geometric parameter, alternatively. The LSH system governed by system (1)
shows a complex dynamical behavior for the parameters values a=1, b=1.5, c=26, d=0.7, as shown in Figs. 1(a) and 2(b).
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