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a  b  s  t  r  a  c  t

For  improving  the  convergence  accuracy  and  diversity  of  multi-objective  optimization  algorithm  a multi-
objective  quantum-behaved  particle  swarm  optimization  algorithm  with  double-potential  well  and
share-learning  is proposed,  which  overcomes  the  deficiency  of  particles  readily  gathering  in identical
solutions.  The  two local  attractors,  inside  and  outside,  are  introduced  to construct  the  particle  locations
updating  model,  using  the quantum  tunneling  and  transition  effects  in double-potential  well  model.  In
this  way,  the  particle  moves  to the  solution  sparseness  region  in  later  evolution  stage,  so  as  to  avoid  gath-
ering  in the  single  local  attractor  and  escape  from  local  optimum.  Therefore  the  optimization  accuracy
of  the  algorithm  is  improved.  The  share-learning  strategy  is adopted  to extend  the  search  range  of  par-
ticles and  increase  the  diversity  of  solutions.  The  problem  of  easily  converging  to  boundary  solutions  in
quantum-behaved  particle  swarm  optimization  algorithm  could  be  avoided.  Simulation  results  show  that
the proposed  algorithm  makes  excellent  performance  in optimization  accuracy,  convergence,  diversity,
and distribution,  compared  with  three  existing  algorithms.  Moreover,  the  proposed  algorithm  can  hold
on better  convergence  and  distribution  performance  when  handling  high-dimensional  multi-objective
problems.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The multi-objective optimization (MOO) problems widely exist
in the realms of path planning, control system design, struc-
ture optimization, and operational scheduling. Generally, these
objectives are conflicting with each other, which means that an
improving of one objective may  result in performance degrada-
tion of another objective. Therefore, we must make a compromise
among these objectives since it is impossible for all these objec-
tives to attain the optimum. As an intelligent optimization method,
the evolutionary algorithm becomes a major branch to handle the
multi-objective optimization problem [1,2]. The particle swarm
optimization (PSO) algorithm [3,4], one of the evolutionary algo-
rithms, is widely applied to MOO  problem due to the merits of fast
convergence, simple operation and less parameters. In 2002, Coello
[5] first proposed the multi-objective particle swarm optimiza-
tion (MOPSO) algorithm, and then the adaptive grid was applied
to maintain external file [6]. Raquel [7] adopted a new strategy
named crowded distance sorting to update the external file of
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particle swarm. Lechuga [8] improved the diversity of solution via
niche technique. And Coelho [9] introduced the Gauss mutation
operator to MOPSO algorithm for improving the convergence per-
formance.

In the standard PSO system, the convergence of particles is
implemented by trajectories, and they could not search the entire
solution space due to the shortcoming of low speed. Bergh [10]
demonstrated that the standard PSO algorithm cannot converge
to global optimal solution when solving complicated optimization
problem. Therefore it is an essential flaw for PSO algorithm with
low precision in local searching. For this problem, Sun [11,12] pro-
posed the quantum-behaved particle swarm optimization (QPSO)
algorithm, which was  inspired by the quantum mechanics theory.
In QPSO, a new model for the particle location update was built via
the bound state of quantum ı potential well. And the global con-
vergence of QPSO was proved by Markov process and probabilistic
metric space, respectively [13,14]. Since QPSO algorithm displays
excellent performance on single objective optimization [15,16], Shi
[17] applied it to MOO  problem and compared with multi-objective
PSO (MOPSO) algorithm, which showed the superiority of multi-
objective QPSO (MOQPSO) on the convergence speed and accuracy.
The MOQPSO algorithm has not been widely adopted because
the faster convergence rate of QPSO may  result in premature
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convergence, which reduces the population diversity and conver-
gence precision. Though this disadvantage could be mended via
introducing the Gaussian mutation operator and crowded distance
sorting, the deficiency that the particles tend to accumulate at some
special locations does not change essentially.

Aiming at improving the accuracy, diversity and uniformity
of QPSO for handling MOO  problem, this paper proposes a new
MOQPSO algorithm based on double-potential well and share-
learning (MOQPSO-DPS). According to the quantum tunneling and
transition characteristics of double potential well, two attractors
inside and outside are introduced to construct the model of particle
location update, so that the particles could transfer to distributed
sparse region of solution at later evolution process. In addition, the
share-learning strategy is adopted to expand the search scopes.
Moreover, the Gaussian mutation operator is also applied in the
algorithm so as to improve the local searching precision, which
prompts the particles to seek out the real Pareto optimal solution
sets.

2. Basic concept of multi-objective optimization

Usually the basic concepts in multi-objective optimization field
are as follows [18].

MOO  problem: The model of MOO  problem can be described as
(without loss of generality, the paper supposes that it is a mini-
mization problem):

min  y = f (x) = [f1(x), f2(x), · · ·,  fm(x)]

s.t. gi(x) ≤ 0, i = 1, 2, · · ·,  p

hi(x) = 0, i = 1, 2, · · ·, q

(1)

where x ∈ D is the decision vector and y ∈ Y is the objective vector.
fi(x) are objective functions. D and Y are the decision space and
objective space. gi(x) ≤ 0 and hi(x) = 0 are inequality and equality
constraints, respectively.

Pareto dominance: For two given points x0, x1 and, x0 Pareto
dominates x1, written as x0 ≺ x1, if and only if

∀ i ∈
{

1, 2, · · ·, m
}

: fi(x0) ≤ fi(x1), and

∃ j ∈
{

1, 2, · · ·,  m
}

: fi(x0) < fi(x1)
(2)

Pareto optimal: The solution x0 is Pareto optimal, if and only if
¬ ∃ x1 : x1 ≺ x0.

Pareto optimal set:  The set PS =
{

x0|¬∃x1 : x1 ≺ x0
}

constituted
by all of the Pareto optimal solutions.

Pareto optimal front: The region constituted by the objective
function values of all the Pareto optimal solutions.

PF =
{

F(x) = (f1(x), f2(x), · · ·,  fm(x)) |x ∈ PS
}

3. Multi-objective quantum-behaved particle swarm
optimization algorithm

3.1. Quantum-behaved particle swarm optimization algorithm

Refs. [11,12] proposed a quantum-behaved particle swarm opti-
mization algorithm based on quantum mechanics theory, using the
quantum ı potential well. It describes the aggregation of parti-
cles via the bound state of quantum, and the particles in bound
state could appear at any location of the solution space at a certain
probability. Therefore, the particle can search the entire feasible
solution space at each iteration, which is the most striking differ-
ence between QPSO and PSO.

For the standard PSO algorithm, the particle state is determined
by location and speed. Yet, the particle of QPSO algorithm only

updates the location without speed. Ref. [12] derived the particle
location update equation of QPSO by wave function of ı potential
well, that is

 (Y) = 1√
L
e−|Y|/L (3)

Its probability density function Q and distribution function F can
be written as

Q (Y ) =
∣∣ (Y )

∣∣2 = 1
L
e−2|Y|/L

F(Y ) = e−2|Y|/L
(4)

Pick a uniform random number u in [0,1], and set u = F(Y), then
we get

Y = ± L

2
ln

(
1
u

)
(5)

Substituting Y = x − P into Eq. (3), the particle location update
equation is shown as

xi(t + 1) = Pi(t) ± Li(t)
2

ln
(

1
ui(t)

)
(6)

and

Pi(t) = ϕi(t)pi(t) + [1 − ϕi(t)] g(t) (7)

Li(t) = 2˛
∣∣c(t) − xi(t)

∣∣ (8)

c(t) = 1
M

M∑
i=1

pi(t) (9)

where i = 1, 2, · · ·,  M is the ith particle, M is the size of particle swarm,
t is the evolutionary generation. xi(t), Pi(t) and Li(t) are the particle
current location, the local attractor location, and the characteristic
length of particle aggregation state, respectively. pi(t) is the individ-
ual best location of the particle, and g(t) is the global best location,
also known as the location of guider particle. c(t) is the average best
location of the entire particles at generation t. Both ui(t) and ϕi(t) are
the uniform random numbers in [0,1]. If ui(t) < 0.5, Eq. (6) takes ‘+’;
otherwise takes ‘−’.  ̨ is the expansion–constriction factor, which
is the only parameter except the swarm size and maximum itera-
tion. Ref. [19] proved that the global convergence can be acquired
when  ̨ < 1.782, which usually set  ̨ in linear decreasing at each
iteration.

3.2. Principle of MOQPSO

As opposed to the single objective optimization converging to a
single solution, the multi-objective optimization obtains a Pareto
optimal set. Hence the Pareto optimal solutions in each generation
should store in external file, and this file must update and main-
tain continually along with the particles movement so as to arrive
Pareto optimal front finally. This potential Pareto front obtained
by MOO  algorithm is expected to be close to the real Pareto opti-
mal  front, namely, with great convergence property. Moreover, the
Pareto front should be uniformly distributed in a broader range.

QPSO algorithm displays excellent global searching capability
and fast convergence on single objective optimization. However,
the faster convergence rate of QPSO may  result in premature
convergence when adopted in MOO  problem. The Pareto opti-
mal  solution tends to gather in boundary solutions which reduces
the population diversity. Generally, Gaussian mutation operator
or chaos mechanism could be introduced to enhance population
diversity and improve premature tendency. Maintaining external
file via adaptive grid, clustering technique or crowded distance
sorting, could prompt the distribution of Pareto solutions more
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