
Optik 127 (2016) 5021–5028

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

Improved  measurement-driven  Gaussian  mixture  probability
hypothesis  density  filter

Li  Gao ∗,  Yang  Wang
Department of Mechanical and Electronic Engineering, Shangqiu Polytechnic, Shangqiu 476000, China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 16 January 2016
Accepted 18 February 2016

Keywords:
Multi-target tracking
Measurement-driven
Gaussian mixture PHD
Real-time performance

a  b  s  t  r  a  c  t

The  probability  hypothesis  density  (PHD)  is an  effective  method  for tracking  the  time-varying  number
of  targets  in  multi-target  tracking.  Gaussian  mixture  is  an  approximation  method  to obtain  the  closed
solution  of  PHD.  However,  the  tracking  performance  of  the Gaussian  mixture  PHD  filter  will  decline
sharply  when  multiple  targets  born  and  disappear  in  closely  spaced  target  tracking  scenarios.  In addition,
real-time  performance  of  multi-target  tracking  cannot  be  met  in heavy  clutter  scenario.  To  solve these
problems,  an  improved  measurement-driven  Gaussian  mixture  PHD  algorithm  is  proposed  in  this  paper.
First,  the  multi-target  measurement  set  at each  time  step  is  divided  into  non-intersect  measurement
subset,  where  only  survival  and  birth  measurement  set are  used  to update  targets.  Due to  most  clutter
measurements  do not  used  to  update  targets  in  the  update  step,  better  real-time  performance  can  be
achieved.  Second,  for the  purposed  of further  improve  the  performance  or multiple  target  tracking,  a
backward  smoothing  based  on  varied  length  window  is  utilized  to  reduce  the  possibility  of  wrong  tracking
of  targets.  In  numerical  experiments,  the results  demonstrate  that the  proposed  approach  can  achieve
better  performance  compared  to  the  other  existing  methods.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Recent years, the random finite set (RFS) theory [1,2] for multi-
target tracking has attracted considerable attention, which offers
an elegant representation of a finite, time-varying number of tar-
gets and measurements. The probability hypothesis density (PHD)
[3] and the cardinalized PHD (CPHD) [4] are two  suboptimal
approximations but more tractable alternative to the RFSs Bayesian
multiple target filtering. The Sequence Monte Carlo PHD (SMC-
PHD) [5] and Gaussian mixture PHD (GM-PHD) [6] are two  major
implementations of the PHD filter, which have been widely applied
in various fields such as visual tracking [7], radar targets [8], and
robotics [9]. Moreover, there are some modified versions of both
SMC-PHD and GM-PHD in [10,11].

The real-time multi-target tracking has been demanded increas-
ingly in recent years [12,13]. For the problem of real-time tracking,
there are some approaches reported in the literature. In [14], an
efficient data-driven particle PHD filter for multi-target tracking is
proposed by Zheng. In Zheng’s algorithm, clutters are eliminated by
using historic states of targets, and the remainder measurements
are classified as survival and birth measurements. The real-time
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performance of Zheng’s algorithm is better than the original par-
ticle PHD filter. Unfortunately, the method proposed in [14] is
specialized to the class of one newborn target during a sampling
period, otherwise, the performance of the algorithm will decline.
Moreover, the algorithm may  underestimate the number of targets
when multiple targets appear closely to each other. The similar idea
is utilized in the sequential Monte Carlo multi-Bernoulli filter (SMC-
MB filter) in [15,16], and the real-time performance of the SMC-MB
filter also can be achieved. However, the update scheme for targets
proposed in the SMC-MB filter may  overestimate target number
under the closely spaced targets scenario, in that some targets may
be updated repeatedly by using one measurement. Although, the
methods mentioned above can improve the performance of original
PHD filter to some extent, and achieve better real-time performance
than that of the latter. However, the performance of these filters
is also disturbed by clutter measurements, and the drawback of
multiple newborn targets in closely spaced targets scenario is not
solved yet.

In this paper, an improved measurement-driven Gaussian
Mixture PHD filtering algorithm for multiple target tracking is pro-
posed. The original measurements are divided into survival, birth
and clutter measurements at each time step. The survival mea-
surements are used to update the survival targets and the birth
measurements are adopted to update the birth targets. Owning
to the fact that most clutter measurements do not participate in
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updating the targets in the update step, better real-time perfor-
mance can be achieved. To further improve the performance of
multiple target tracking, a backward smoothing based on varied
length window is utilized to reduce the possibility of wrong track-
ing of targets.

The remainder of this paper is organized as follows. Section 2
explains the background of multi-target tracking. The proposed
multi-target tracking algorithm is discussed in Section 3. In Section
4, we study the performance of the proposed approach via differ-
ent Monte Carlo simulations. Finally, the conclusions are given in
Section 5.

2. The PHD and GM-PHD filter

In RFS framework, the multi-target state and multi-target obser-
vation defined as random finite sets are Xk =

{
xk,1, xk,2, . . .,  xk,Nk

}
and Zk =

{
zk,1, zk,2, . . .,  zk,Mk

}
, where the Nk and Mk denote the

target number and measurement number at time k, respectively.
The PHD is a suboptimal alternative to multi-target Bayesian filter
[17], which propagates the first order statistical moment of the pos-
terior multi-target states. The PHD filter recursive calculation con-
sists of prediction step and update step. The prediction equation is

�k|k−1 (x) =
∫
pS,k (�) fk|k−1 (x|�)�k−1 (�)d�

+
∫
ˇk|k−1 (x|�)�k−1 (�)d� + �k (x) (1)

when the measurement is available at time k, the PHD update
equation can be described as

�k (x) =
[
1 − pD,k (x)

]
�k|k−1 (x)

+
∑
z ∈ Zk

pD,k (x) gk (z|x)�k|k−1 (x)

�k (z) +
∫
pD,k (�) gk (z|�)�k|k−1 (�)d�

(2)

where ps,k is the survival probability, pD,k is the detection probabil-
ity, and �k(z) is the clutter intensity. �k (x) is the intensity function
of the newborn targets, and ˇk|k−1 (x|�) is the spawn target inten-
sity. fk|k−1 (x|�) is the state transition probability density function
of the multi-target, gk (z|�) is the multi-target likelihood function.

The GM-PHD filter provides a closed-form solution via the sum-
mation of mixing weights of Gaussian components to approximate
the PHD function. Assume that N (·; m, P) is a Gaussian density
with mean m and covariance P. Based on some assumptions [18]
hold, assume the posterior intensity at time k − 1 is expressed as a
Gaussian mixture with Jk–1 components as

�k−1 (x) =
Jk−1∑
i=1

w(i)
k−1N

(
x; m(i)

k−1, P(i)
k−1

)
(3)

where w(i)
k−1 is the weight of ith Gaussian mixture at time k − 1.

Then, the predicted intensity at time k is also a Gaussian mixture
with Jk|k-1 components calculated as

�k|k−1 (x) =
Jk|k−1∑
i=1

w(i)
k|k−1N

(
x; m(i)

k|k−1, P(i)
k|k−1

)
(4)

When the measurement set Zk is available at time k, the posterior
intensity is a Gaussian mixture and can be described as

�k (x) =
(

1 − pD,k
)
�k|k−1 (x)

+
∑
z ∈ Zk

Jk|k−1∑
i=1

w(i)
k (z)N

(
x; m(i)

k|k (z) , P(i)
k|k

)
(5)

where w(i)
k

denotes the weight of ith target computed as

w(i)
k (z) =

pD,kw
(i)
k|k−1g

(
z|x(i)

)
�k(z) + pD,k

∑Jk|k−1
j=1 w(i)

k|k−1g
(
z|x(j)

) (6)

For the purpose of keeping the efficient of the GM-PHD filter,
the pruning and merging method of Gaussian mixture is needed
[18].

3. The improved measurement-driven GM-PHD algorithm

In this section, the Gate technique is introduced to partition the
multi-target measurement set at each time step, and a backward
smoothing based on varied length window is utilized to reduce the
possibility of wrong tracking of targets. The proposed method is
referred to as a MD–BS–GMPHD filter, which is explained in detail
as follows.

3.1. Measurement-driven scheme

According to the RFS theory, multi-target observation set Zk is a
union at time k, which is composed of both target measurements
and clutter measurements. Because the original GM-PHD filter util-
izes Zk to update all the targets, the performance of the GM-PHD
filter not only affected by clutter measurements, but also interfered
by the measurement originated from survival targets and birth tar-
gets. The motivation behind the measurement-driven scheme is to
reduce the disturbance between measurements in the update step,
where newborn targets are update by birth measurements and sur-
vival targets are update by survival measurements, respectively.

The validation gating method is an effective approach to elim-
inate the clutters applied in different filters [19,20]. Based on
the predicted target states, the measurements can be divided
into survival measurements, birth measurements and clutter mea-
surements at each time step by using the gating method. Under
the linear Gaussian assumption, the elliptical gating technique is
incorporated into the GM-PHD filter to partition the current mea-
surements. An elliptical region can be described as

� (k, �) =
{
z :

(
z − Hkmk|k−1

)T
S−1
k

(
z − Hkmk|k−1

)
≤ �

}
∀z ∈ Zk

(7)

� = −2 ln (1 − PG) if �z = 2 (8)

where � is the gating threshold, and PG is the probability of
target-originated measurements in the elliptical region. Hk is the
measurement matrix, and Sk is the measurement residual covari-
ance matrix. The dimension of the measurement and predicted
target state are denoted by nz and mk|k−1, respectively.

Assuming that, at time k, the predicted multi-target intensity is
represented by Eq. (4), and the spawned targets are not considered
in tracking scenario, therefore, the predicted multi-target intensity
can be calculated as

�k|k−1 (x) = �S,k|k−1 (x) + �k (x) (9)

�S,k|k−1 (x) = pS,k

Jk|k−1∑
i=1

w(i)
k−1N

(
x; m(i)

S,k|k−1, P(i)
S,k|k−1

)
(10)

�k (x) =
J�,k∑
j=1

w(j)
�,k

N
(
x; m(j)

�,k
, P(j)

�,k

)
(11)

where �k|k−1 is the predicted multi-target intensity, �S,k|k−1 is the
predicted survival target intensity.
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