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a  b  s  t  r  a  c  t

Stability  of practical  polarization  transformer  (PPT)  proposed  by  Huang  is studied  for  the  application  of
all-fiber  optical  current  transformers  (AFOCTs).  The  previous  zero-order  approximate  solution  ignores
inter-mode  coupling,  which  is one  of the  factors  causing  AFOCT  instability.  This  paper  develops  a  concise
approximate  solution  to take  into  account  the  coupling  between  two  local  eigen-modes  in  the  PPT. It
is shown  that  power  exchange  of  the  two  modes  is  determined  by  the  internal  coupling  coefficient.
Guidelines  for designing  spin  rate  profiles  are  given  and  verified  with  numerical  results.
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1. Introduction

Over the past 20 years, all-fiber optical current transformer
(AFOCT) as a candidate of a next generation device for high voltage
measurement has received significant attention [1,2]. The all fiber
quarter wave-plate (AFQW) is a key component in an AFOCT sys-
tem. AFQW can interconvert between linearly polarized lights and
circularly polarized lights. A commonly used AFQW is a short polar-
ization maintaining (PM) fiber whose birefringent axes are set to
45◦ with respect to the axes of interconnecting PM fibers. The length
of the retarder is several integers plus a quarter of the fiber beat
length. The beat length, however, is susceptible to environmental
changes, resulting in a scale factor error of the AFOCT system [3].
Huang proposed a polarization transformer by spinning a PM fiber
with a slowly varying spin rate from zero to fast, termed practi-
cal polarization transformer (PPT), which outperforms conventional
fiber retarders in terms of stability, and therefore can improve the
long-term stability of AFOCT systems [4,5]. Unlike conventional
AFQW, PPT is a single local eigen-mode excitation device from one
end to the other, making the state of polarization (SOP) transfor-
mations less dependent on wavelength and temperature. PPT was
also termed by Rose et al. as polarization-transforming fiber [6].

Some theoretical analysis, modeling calculation and exper-
imental research works have been performed on this variably
spun birefringence fiber. When the intrinsic structure satisfies the
basic criteria, the ellipticities can reach to 0.9 for the linear-in,
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circular-out (LICO) case and 0.002 for the circular-in, linear-out
(CILO) case, respectively [7]. However, in the application of high-
precision AFOCTs, the stability of the transformed SOP by a PPT is
also crucial. The inter-mode coupling in a PPT, which is ignored
by the zero-order approximation [8], is an important cause of the
instability of the AFOCT system.

In this work, a concise first-order approximate solution that
takes into account coupling between the two  local eigen-modes
in the PPT is obtained. The factors affecting the coupling efficiency
of the two  modes are analyzed, and guidelines for designing spin
rate profiles are given. It is found that a stable output SOP of the
PPT, and a stable scale factor of the AFOCT system built upon it, can
be obtained by a careful design of the spin rate profile, instead of
increasing the length of the device.

2. Physics of PPT

PPT is fabricated by spinning a PM fiber preform at a slowly
varying spin rate, or by post-draw twisting of a PM fiber at a soften-
ing temperature. In a PPT, the orthogonal birefringence axes rotate
along the fiber core at a slowly increasing rotation rate, as shown
in Fig. 1. On the left end, the spin rate is zero, while on the right end
the birefringent axes are fast-spun with several rotations within a
beat length of the un-spun PM fiber.

Coupling between the two  linear polarization modes along the
birefringent axes is governed by a coupled-mode equation [4]:
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Fig. 1. Schematic of a PPT.

where, Ax and Ay are the amplitudes of the two linear polarization
modes along the birefringent axes, �ˇ  the phase-velocity differ-
ence between the two modes, and �(z) the position-dependent spin
rate. For the entire device, the local eigenstates are not invariable
as the spin rate varies as a function of position z:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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where,
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)2

(3)

The eigenstates at the un-spun end are two linearly polarized
lights along the birefringence axes, E1u(z) = [0,1] and E2u(z) = [1,0].
At other positions, they are two orthogonal elliptically polarized
lights. At the fast spun end, where, �(z) � �ˇ/2, they become
two orthogonal circularly polarized lights: E1f (z) = [1,  j]/

√
2 and

E2f (z) = [j, 1]/
√

2. To describe the polarization evolution, a super-
mode theory based on the local eigenstates is developed [8]:

dW(z)
dz

= N(z)W(z) (4)

where, W(z) = [W1(z), W2(z)]T is an amplitude vector of the local
eigenstates E1(z) and E2(z), and
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(5)
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.  (6)

3. Approximate analytical solution of coupling

Eq. (4) does not have an exact closed-form solution since the
spin rate �(z) is variable. A zeroth-order approximate solution is
presented in [8], in which energy exchange between the two local
eigenstates is ignored. However, when the slow variation condition
d�(z)/dz ≈ 0 is not satisfied, coupling cannot be ignored. The cou-
pling can be analyzed numerically, for example, using the transfer
matrix method (TMM). The transfer matrix M(n�z) at position n�z
is:
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where, �n =
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n . Therefore, the amplitude vector of the local
eigenstates is obtained:[
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Fig. 2. Coupling coefficient distribution and power evolutions along the PPT.

where the total transfer matrix is

MN =
N∏

n=1

M (n�z) (9)

The off-diagonal entries in the transfer matrix represent the cou-
pling. Thus, we define a coupling coefficient at n�z as

Cn =
(

Qn/�n

)2
(10)

Assume a right-hand circularly polarized (RHCP) light is
injected into the fast spun end. Let the linearly decreasing
spin rate be described by �(z) = �max[1 − z/LT], the maximum
spin rate �max = 10,000 rad/m, the phase-velocity difference
�  ̌ = 1000 rad/m, and the length of PPT LT = 400 mm.  Using TMM,
a numerical solution to Eq. (4) can be obtained as shown in Fig. 2,
in which (a) depicts the coupling coefficient distribution from the
fast spun end to the zero-spun end, and (b) and (c) show the power
evolutions of E1 and E2, respectively (P1 = |W1|2, P2 = |W2|2). From
these plots, we  observe that power in the two local modes is not
constant as indicated by the zeroth-order approximation. Towards
the zero-spun end, as the coupling coefficient rises steeply, power
coupling between the two modes becomes increasingly striking,
and exhibits an oscillating pattern.
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