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a  b  s  t  r  a  c  t

This work  addresses  the problem  of  designing  a controller  for the  stabilization  and  synchronization  pro-
cesses  of  a large  class  of Fractional-order  Chaotic  (resp. hyperchaotic)  Systems  (FoCS).  A  Generalized
Prediction-based  Control  (GPbC)  law is presented  in  this  paper.  Based  on Lyapunov  stabilization  argu-
ments  and  a  recent  stability  theorem  of  fractional-order  systems,  stability  analysis  of  the  closed-loop
control  system  is investigated.  The  design  and  multiobjective  optimization  of  GPbC  scheme  offers  some
superior  properties  such  as  faster  finite-time  convergence,  higher  control  precision  which  very low  energy
consumption  and  stability  conditions  guarantee  in control  and  synchronization  of  FoCS.  Some  numerical
simulations  are  provided  to confirm  the  validity  of  the  proposed  analytical  results.
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1. Introduction

Recently, fractional calculus has been rediscovered by scientists
and engineers and applied in an increasing number of disciplines.
Its increase use in a certain number of physical and engineering
processes that are best described by fractional differential equa-
tions has motivated out its study. Modeling and control topics
using the concept of Fractional-order of integral and derivative
operators have been attracting more attentions. The Fractional-
order Chaotic (resp. hyperchaotic) Systems (FoCS), generalization
of integer-order chaotic systems, can be considered as a new alter-
native which significant attention has been focused on developing
techniques for analysis, control and synchronization of this fam-
ily of nonlinear dynamical systems. In addition, many researchers
in the fractional control community have made great contrib-
utions varied from conventional, advanced to intelligent control
approaches [1–9]. For example, Chen et al. in Ref. [1] investigated
the chaos control of a class of Fo chaotic systems via sliding mode
concept. Zhu et al. [2] presented an algorithm for numerical solu-
tion of fractional-order differential equation. The synchronization
of fractional-order Chua oscillator is discussed. A survey of frac-
tional dynamical systems, modeling, stability analysis and control
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has been presented in [3]. In [4,5], the authors investigate the stabil-
ity conditions of n-dimensional fractional-order nonlinear systems
with commensurate-order lying in (0, 2). The obtained results
are applied to stabilizing a large class of FoCS via a linear state-
feedback controller. In [6], the function projective synchronization
between different FoCS with uncertain parameters using modified
adaptive control method is studied. The adaptive function projec-
tive synchronization controller and identification parameter laws
are developed on the basis of Lyapunov stability theory. A new
mean-based adaptive fuzzy neural network sliding mode control is
developed by Wang et al. [7], to perform the chaos synchronization
process of fractional-order uncertain systems. In [8], the problems
of the robust stability and stabilization of fractional order chaotic
systems based on uncertain Takagi-Sugeno fuzzy model are stud-
ied. In [9], a modified sliding mode control scheme is proposed to
realize complete synchronization of a class of FoCS. The prediction-
based control, as an advanced technique, has been introduced by
Ushio and Yamamoto [10] in order to overcome some limitations
of the so called delayed feedback control derived by Pyragas [11].
Recently, a number of analytical results for the stabilization of fixed
points and periodic orbits, in ordinary or fractional-order chaotic
systems, using this control technique has been commonly applied
due to its simplicity and efficiency [12–16]. In fact, prediction-
based control approach offers some superior properties when
compared to some other controllers such as faster finite-time
convergence and higher control precision which very low energy
consumption.
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The application of fractional-order calculus has been sig-
nificantly increased and the fractional-order form of linear
state-feedback control approach, or simply Fractional-order Con-
trollers (FoC) introduced and well adressed in [17–19] is,
attractively, become a major topic in control and synchronization
processes of FoCS [20–24]. In particular, In [20], the problem of
controlling unstable equilibrium points and periodic orbits is inves-
tigated via the fractional feedback of measured states. In [21], the
control and synchronization of the fractional-order Lorenz chaotic
system have been adressed via the fractional-order derivative
approach. The single state FoC for chaos synchronization process
based on the Lyapunov stability theory is presented by Li et al. [22].
In [23], the fractional operators are introduced to develop a general
form for synchronizing a class of FoCS. The authors, also, adopt the
CRONE-Oustaloup method to simulate the fractional-order systems
and the fractional calculus operators. Fractional-order PI controller
for locally stabilize unstable equilibrium points of a class of chaotic
fractional order systems is proposed by Tavazoei and Haeri in [24].

The prediction-based control technique in its fractional-form
may  be seen as an alternative whose objective is to improve the per-
formances required in control and synchronization of a large class
of FoCS [15,25]. Therefore, designing a fractional-order prediction-
based control method for FoCS is still, also, an open problem.

A view of the researches carried out in the field of fractional-
order modeling and control, the elaboration of control law, the
discretization process of fractional operators D±˛

t
•,  ̨ ∈ R  (resp.

s±˛) and the stability analysis of fractional-order systems are the
most fundamental and important issues.

Taking into consideration the previous discussion, we  propose
in this paper a novel method to stabilize and to synchronize a class
of fractional-order chaotic and hyperchaotic systems by combining
the FoC and the prediction-based control. The design and opti-
mization of the proposed Generalized Predictive-based Controller
(GPbC) is derived and based on Lyapunov stabilization arguments
and genetic learning. Finally, Numerical simulations are given to
show the effictiveness of our designed scheme by taking a class of
fractional-order hyperchaotic systems as illustrative examples.

The rest of the paper is organized as follows. In Section 2,
basic definitions and some preliminaries of fractional calculus and
fractional-order systems are introduced. A description of FoCS is
also included. Based on fractional approach, a new alternative of
fractional model to control and synchronize a large class of com-
mensurate and incommensurate FoCS is proposed in Section 3.
The design tools of the proposed scheme are also discussed. Some
numerical simulations presented to confirm the validity of the
analytical results of the paper are displayed in Section 4. Finally,
conclusion is given in Section 5.

2. Overview of fractional calculus and fractional-order
systems

Several alternative definitions of the fractional-order integrals
and derivatives exist. The three most common known defini-
tions of fractional operators are Grünwald–Letnikov definition,
Riemann–Liouville definition and Caputo definition. Next, we  will
recall some basic definitions, remarks and lemmas of the fractional-
order calculus and FoCS systems [19,26].

Definition 1. The Riemann–Liouville (RL) fractional derivative of
order q > 0 of a function f defined on the interval [a, b] is given by

RL
a Dq

t f (t) = 1
� (n − a)

(
d
dt

)n
t∫
a

(t − �)n−q−1 · f (�) d� (1)

where n is the first integer larger than q, i.e.,  0 < (n − 1) < q < n
and � (•) is the Euler Gamma  function.

Definition 2. The Caputo (C) fractional derivative of order q > 0 of
a function f defined on the interval [a, b] is given by

C
a Dq

t f (t) = 1
� (n − a)

t∫
a

(t − �)n−q−1 · f (�) d� (2)

where n is the first integer larger than q.

Definition 3. The Grünwald–Letnikov (GL) approach, the most
suitable method for the realization of discrete-control algorithms,
is given by

GL
a Dq

t f (t) = lim
h→0

h−q ·
N−−−∑

i=0

(−1)i ·
(

q

i

)
· f (t  − i · h) (3)

where N− − − =
[
(t − a) /h

]
is the upper limit of the computa-

tional universe, [•] means the integer part and h is the step-time

increment. cq
i≥0 = (−1)i ·

(
q
i

)
represents the binomial coefficients

calculated according to the relation

cq
0 = 1, cq

i
=
(

1 − 1 + q

i

)
· cq

i−1, ∀i > 0 (4)

As shown by GL, RL and C definitions, the fractional-order
derivatives are global operators having a memory of all past events.
This property is used to model hereditary and memory effects in
most materials and systems [27].

Remark 1. For the memory term expressed by a sum in (3), a
‘short memory’ principle introduced by Podlubny et al. [19] can
be used. According to this principle, the length of system mem-
ory can be substantially reduced in the numerical algorithm to get
reliable results. Some authors propose other ideas to improve the
storage capacity and computation-time of fractional-order systems
[28–30].

Definition 4 ([31,32]). A direct definition of the fractional deriva-
tive Dq

t y (t) is based on finite difference of an equidistant grid in
[0, 1]. Assume that the function y (�) satisfies some smoothness
conditions in every finite interval [0, t] ,  t ≤ T . Choosing the grid

(0 = �0) < �1 < · · · < (�n+1 = t = (n + 1) · h) , (�n+1 − �n = h) (5)

and using the notation of finite differences

�q
h
y (t) = 1

hq
·
(

y (�n+1) −
n+1∑
v=1

cq
v · y (�n+1−v)

)
(6)

where cq
v = (−1)v−1

(
q
v

)
, the GL definition reads

Dq
Ry (t) = lim

h→0

1
hq

· �q
h
y (t) (7)

Lemma  1 ([31,32]. (Order of approximation)). Let the function
y (�) be smooth in [0, T]. Then, the GL approximation satisfies
for each 0 < t < T and a series of step sizes h with t/h ∈ N  and
t = (n + 1) · h

Dq
Ry (t) = 1

hq
· �q

h
y (t) +  o (h) (h �→ 0) (8)

where o (h) is the truncated error. If q ∈ N+, the well known finite
backward differences are given. If q = 1, then the first-order finite
difference (y (�n+1) − y (�n)) /h follows. If q = 2, then the second-
order finite difference (y (�n+1) − 2y (�n) + y (�n−1)) /h2, and so on.

Definition 5. The fractional-order system (resp. FoCS) of a func-
tion x (t) ∈ [0, ∞) (system states) is defined as

0Dq
t x (t) = F (x (t) ,  t) , x (t)

∣∣
t=0

= x0 (9)
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