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a  b  s  t  r  a  c  t

The  error  spectrum  is a comprehensive  metric  for estimation  performance  evaluation  in that  it  is  an
aggregation  of many  incomprehensive  measures.  However,  the  error  spectrum  is a  two-dimensional
curve  for  any  estimand  (i.e., the  quantity  to be  estimated)  of  interest.  Therefore,  unless  one  error  spectrum
dominates  the  others,  it  is in  general  not  straightforward  to say  which  one  is better.  Although  the  dynamic
error  spectrum  (i.e., the average  height  of the error  spectrum)  was proposed  to tackle  this  problem,  it
suffers  from  the  problem  of information  loss  due  to the  mapping  of  the  whole  error  spectrum  at a time
instant  into  a  single  point.  Particularly,  if  the  average  heights  of  two  error  spectrums  are the  same,  they
are  still  indistinguishable.  To  alleviate  this,  two new  metrics  called  range  error  spectrum  induced  area  and
dynamic  error  spectrum  induced  area  are  proposed  in this  paper.  Then  how  to  combine  these  two  new
metrics,  called  as enhanced  error  spectrum,  are  further  studied.  An additive  and  a  multiplicative  form  of
the  enhanced  error  spectrum  are  presented  respectively  for  different  scenarios.  A  numerical  example  is
provided  to  illustrate  the  effectiveness  of the  metrics.  It is  shown  that  due  to  the consideration  of  more
information,  the  new  metrics  have  greater  applicability  than  the  dynamic  error spectrum.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In recent years, estimation performance evaluation (EPE) has
received considerable attention owing to its increasing appli-
cation in estimation/filtering (see, e.g. [1–3,5,6,9–12]), track
fusion/tracking [13], performance analysis [14], etc. To the best
of our knowledge, EPE includes mainly two components: the
estimator ranking and the estimator evaluation. For the estimator
ranking, Pitman proposed a criterion known as the Pitman close-
ness measure (PCM) [17]. Since then, most existing research has
focused on the improvement of the non-transitivity problem of the
PCM (see, e.g. [18–22]), which is a major obstacle for EPE. Inspired
by the PCM, the authors of [21] proposed an estimator ranking vec-
tor which includes several performance metrics. Thus, a key aspect
in EPE is the selection and proper interpretation of the metrics used
for the estimator ranking and the estimator evaluation. The root
mean square error (RMSE) is widely used in EPE, since it is the most
natural finite-sample approximation of its theoretical counterpart.
As pointed out in [1,2], the RMSE is easily dominated by large
error terms and has no clear physical interpretation. Therefore,
it was replaced with the average Euclidean error (AEE) in several
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applications [1]. Although the AEE has several advantages, it is still
affected by extreme values. Therefore, several incomprehensive
performance measures were proposed in [2] such as the harmonic
average error (HAE), the geometric average error (GAE), median
error, and error mode. Furthermore, the iterative mid-range error
(IMRE) was presented in [6], since the above-listed metrics are not
robust.

Unfortunately, all of the above-listed metrics can reflect only
one aspect of the estimator performance. Thus, three comprehen-
sive performance measures – the error spectrum (ES), desirability
level, and relative concentration and deviation measures were
proposed in [3–5]. Among these metrics, the ES can reveal more
information about the estimation because it is an aggregation of
several incomprehensive metrics.

However, the ES has some limitations and drawbacks. On one
hand, its calculation without the error distribution is not easy,
though in [7] (a further development of [4]), the authors provided
analytical formulae for the computation of the ES when the error
distribution is given. To overcome this problem, we  proposed two
approximation algorithms in [15,16] based on the Gaussian mix-
ture and power means error. On the other hand, it is difficult to say
which estimator performs better if their ES curves intersect with
each other. To tackle this problem, a dynamic error spectrum (DES)
reflect the estimation accuracy of an estimator was  presented in
[8,9], which is in fact the average height of the ES.
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Although the DES does provide a solution to this problem, it still
has some limitations. First, it is difficult to decide which estima-
tor performs better, when the average height of their ES. Second,
the DES provides a ruler only to measure how large the esti-
mation error is. Recall that the least-squares (LS) estimation and
minimum mean square error (MMSE) estimation differ from the
maximum likelihood (ML) estimation and maximum a posteriori
(MAP) estimation in their underlying ideas. The former seeks an
estimator that has the smallest error, while the latter uses the
“most frequently occurred” value of the estimate as the estimator
[2]. Although the ML  and MAP  estimators may  have a larger aver-
age error, they may  have a higher probability of being close to the
estimate, i.e., the estimation error of the ML  and MAP  estimators
are concentrated to the estimate (the concentration of an estima-
tor in this paper), which reflects the ES curve of the ML  and MAP
estimators more flatness. This has important implications while
choosing an estimation method for a particular application. Thus,
a worthwhile problem is how to also take into account the flat-
ness of an ES curve in the evaluation of the performance of an
estimator.

The main contribution of this work is twofold. First, two  new
estimation evaluation metrics, i.e., range error spectrum (RES)
induced area (RESA) and the DES induced area (DESA), have been
proposed, where the RESA is designed to quantify the flatness
of an error spectrum curve, and the DESA is designed to mea-
sure the estimation accuracy of an estimator. Second, how to
combine these two new metrics, which is called enhanced error
spectrum (EES), is considered in this paper. Two forms of com-
bination are presented for different scenarios. The first form is
additive, which is dependent on prior preference between the
concentration and estimation accuracy. The second form is mul-
tiplicative, which does not depend on the prior preference and is
also suggested when the dynamic error spectrum induced area is
dominating.

This paper is organized as follows. The ES and DES are sum-
marized in Section 2. In Section 3, two areas of ES, called as RESA
and DESA, are designed to evaluate an estimator. Furthermore,
how to combine these two new metrics, i.e., the EES, is considered
in Section 4. A numerical example is provided in Section 5 to
illustrate the superiority of the proposed metrics. The paper is
concluded in Section 6.

2. Summary of ES and DES

2.1. Error spectrum

According to [4,23], let the (possibly vector-valued) estimation
error �̃ of a (point) estimator �̂ be �̃ = � − �̂, where � is the estimand
(i.e., the quantity to be estimated). We  denote e = ‖�̃‖ or e = ‖�̃‖/‖�̂‖
as the absolute or relative estimation error norm, where ‖·‖ can be
1-norm or 2-norm. Then, for ri ∈ (−∞, +∞), the ES is defined as

S(r) = (E[er])1/r =
{∫
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where F(e), f(e), and pi are the cumulative distribution function
(CDF), probability density function (PDF), and probability mass
function (PMF), respectively.

For a discrete {ei}n
i=1, ES can be approximately calculated by

[15,16]
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From (1), it is clear that the ES includes several incomprehensive
metrics as special cases when r is set to some specific values:

(1) S(2) = (E[e2])
1/2

. Thus, for a discrete ei, S(2) =
((1/n)

∑n
i=1e2

i
)
1/2 = RMSE.

(2) S(1) = E[e]. Thus, for a discrete ei, S(1) = 1
n

∑n
i=1ei = AEE.

(3) S(0)�=lim
r→0

S(r) = exp(E[ln(e)]). Thus, for a discrete

ei, S(0)�= 1
n

∏n
i=1ei = GAE.

(4) S(−1) = 1/E[1/e]. Thus, for a discrete ei, S(−1) =
((1/n)

∑n
i=1e−1

i
)
−1 = HAE.

In view of this, the notation r used in this paper is a real number
that satisfies ri ∈ [−1, 2].

Certainly, the ES is a curve for a state estimator of a dynamic
system at any time instant. Therefore, it will be a three-dimensional
plot over the entire time span, which causes difficulty in the EPE of
dynamic systems. Fortunately, the DES has been proposed to tackle
this problem.

2.2. Dynamic error spectrum

According to [8,9], if some prior knowledge is available about the
weights {ωi}n

i=1 corresponding to each different ri, where
∑n

i=1ωi =
1, ri ∈ {rj}n

j=1, −1 ≤ ri ≤ 2, and n is the number of indices over
{rj}n

j=1, the weighted form of the DES is given simply as

DES(ω) =
n∑

i=1

S(ri)ωi (2)

Since it is difficult to obtain the weights, another form of the DES
is given by the average height under the ES curve, as follows:

DES = 1
rn − r1

∫ rn

r1

S(r)dr ≈ 1
n

n∑
i=1

S(ri) (3)

It can be clearly seen that the DES combines several incom-
prehensive metrics into a single metric. Thus, the DES reflect the
estimation accuracy of an estimator the same as the incomprehen-
sive metric. In other words, the DES suffers from the problem of
information loss during this many-to-one mapping, as shown in
Example 1.

Example 1. As pointed out in [2], a more complete description
of estimation performance is the PDF of the estimation error. In
the following example, we directly show why the DES cannot dis-
tinguish the difference among the following error PDFs. Fig. 1(a)



Download English Version:

https://daneshyari.com/en/article/847254

Download Persian Version:

https://daneshyari.com/article/847254

Daneshyari.com

https://daneshyari.com/en/article/847254
https://daneshyari.com/article/847254
https://daneshyari.com

