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a  b  s  t  r  a  c  t

This paper  first  investigates  the influence  of the  dispersion-decreasing  optical  fiber  structure  on  the  self-
similar pulses  interaction  and  compression.  The  dynamic  of  the  evolution  of  a pair  of self-similar  pulses
in  a  dispersion-decreasing  optical  fiber  with  normal  group-velocity  dispersion  (ND-DDF)  under  different
gain  coefficient  g0 of DDF  is  analyzed,  and the  chirp  evolution  is  also  studied  to  analyze  the  propagation
characteristic  of self-similar  pulses.  The  numerical  simulations  show  that  the change  of  gain  coefficient
g0 of  DDF  can  impact  directly  on  the  linear  chirp  of  the  self-similar  pulses.  We  find  out  that  the  smaller
g0 can  generate  better  high-quality  femto-second  pulses  than  the  higher  g0 after  pulses  compression.
Finally,  we  got  a pair  of  ultra-short  pulses  with  a  FWHM  of  124  fs at g0 =  0.015  m−1,  indicating  efficient
and high-quality  pulse compression.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

With the increasing demand of communication capacity, the
requirements of high data transfer rate and distance of optical
communication systems are put forward. The communication sys-
tems based on the optical solitons which have the advantage of
ultra-high repetition rate and shape preserving transmission have
become one of the popular solutions. Recently, another self-similar
asymptotic solution of the nonlinear Schrodinger (NLS) equation
has attracted great attentions because of their potential applica-
tions in optical soliton communication systems.

Self-similar pulse, generated in a dispersion-decreasing optical
fiber [1] or fiber amplifier [2] with normal group-velocity disper-
sion, has attractive characteristics, such as resistance to optical
wave breaking of soliton, self-similarity in shape, and enhanced
chirp linearity [3–8]. The formation of the self-similar pulses for
optical communication systems is associated with interactions
between two adjacent slightly overlapped pulses. Although there
are more and more studies on the generation and propagation of
a single self-similar pulse, to date, there are still limited studies
on the interaction between self-similar pulses. To our knowledge,
all the works on interaction between parabolic pulses have been
mostly based on fiber amplifier [9], dispersion-managed fibers [10]
and nonlinear waveguides [11]. Recently, the properties of the
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self-similar parabolic pulses interaction in a ND-DDF are also inves-
tigated [12,13] too.

This paper further investigates the influence of the dispersion-
decreasing optical fiber structure on the self-similar pulses
interaction and compression. We  find that the change of gain coef-
ficient g0 of DDF can impact directly on the linear chirp of the
self-similar pulses. We compare the case when g0 remain constant
with the case when g0 is changed. The simulation result shows that
the change of g0 can bring the chirp changing accordingly, and the
smaller g0 can generate better high-quality femto-second pulses
than the higher g0 after pulses compression, which is possible to
generate a train of ultra-short pulses at a high repetition rate for
optical communication system.

2. Theoretical model

The propagation of optical pulses in a ND-DDF is modeled by a
NLS equation of the form [1]
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where A(z, T) is the slowly varying amplitude of the pulse enve-
lope and T is measured in a frame of reference moving with the
pulse at the group velocity vg (T = t − z/vg), D(z) represents the vari-
ation in the GVD due to dispersion tapering and is normalized such
that D(0) = 1. ˇ2 and � are the GVD value at z = 0 and the nonlin-
earity coefficient, respectively. Here we use hyperbolic dispersion
tapering in a passive fiber so that the propagating pulse obtains
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the equivalent (noise-free) gain necessary for parabolic pulse gen-
eration, it means D(z) =

(
1/ (1 + g0z)

)
. Here g0 is a constant gain

coefficient.
It has been proved than the solutions of Eq. (1) is a self-similar

asymptotic solution, characterized by a parabolic intensity profile
with constant linear chirp
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Importantly, the theory predicts that in the parabolic region,
the chirp characteristic of the pulse is determined only by the DDF
parameters.

3. Influences of gain coefficient on self-similar pulses
interaction

It is well-known that the spectrum phase changed
induced by group-velocity dispersion (GVD) and the
spectrum broadened induced by self-phase modulation (SPM)
is caused by the relationship between the phase and time. The
instantaneous changed phase means that the center pulse fre-
quency is different from the edge frequency, the relationship
between the difference and the time is defined as chirp, as Eq. (2)
gave out. Here we first study the influences of the gain coefficient
of the DDF on self-similar pulses propagation.

3.1. The chirp characteristic when g0 remain constant

We  launch a pair of Gaussian pulses with the center wavelength
�0 = 1550 nm,  separated by a time-delay �T  = 5 ps and the initial
phases difference 	 = 
 into ND-DDF. Each pulse has pulse energy of
45 pJ and the full width at half maximum TFWHM of 1.0 ps, resulted
in the half-width T0 = TFWHM/(2

√
ln 2) = 0.6 ps. The parameters of

ND-DDF are as follows: ˇ2 = 1.35 ps2 km−1, � = 3.6 W−1 km−1 and
g0 is considered to have a constant value of 0.022 m−1. These
conditions lead to dispersion length LD = T2

0 /
∣∣ˇ2

∣∣ = 267.2 m and
nonlinearity length LNL = 1/ (�P0) = 6.6 m, yielding the order N =√

LD/LNL ≈ 6, which means when the fiber length L is equal to LD,
dispersion and nonlinearity act together as the pulses propagates
along the fiber.

The pulses evolution in the ND-DDF within z = LD is showed in
Fig. 1(a), and the chirp evolution in three-dimension is plotted in
Fig. 1(b), as well as the chirp evolution in two-dimension shown in
Fig. 1(c).

As seen from Fig. 1(a), an oscillation happens inside the overlap
region at the length of LD, and the interaction effect will be stronger
as the fiber length increasing, resulted in a train of asymptotic dark
solitons [9]. This phenomenon can be explained from the point of
view of chirp. As the interacting of self-similar pulses propagation
is under the combined effects of group-velocity dispersion (GVD)
and self-phase modulation (SPM), the composite of GVD-induced
chirp and SPM-induced chirp is linear with time in the center part of
each pulse, while the frequency difference between the overlapping
falling and raising edges of the pulses inducing a beating in the
resultant signal, resulting in the strong oscillation of the interaction
pulses. As shown in Fig. 1(b), the chirp of the self-similar pulses
outside the overlap region remains linear, but presents complex
nonlinear characteristics in the overlap region, with the nonlinear
area broadening as the propagation distance increases.

The chirp evolution trend can be studied more clearly in two-
dimension figure. From Fig. 1(c), the chirp of the single self-similar
pulse is linear in the center, which follows Eq. (2), and the range
of the linear part broadens accordingly with the pulse temporal
width broadening. This high linear chirp can provide enough linear
range to symmetrically broaden pulses, resulting in the perfect self-
similar pulses without the edge oscillation outside the overlap area.

Fig. 1. Waveform evolution (a), chirp evolution in three-dimension (b) and chirp evolution in two-dimension (c) of self-similar pulses in DDF.
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