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a  b  s  t  r  a  c  t

Particle  filter  is  a kind  of powerful  and  effective  simulation-based  method  to  perform  optimal  state
estimation  in  nonlinear  non-Gaussian  state-space  models.  However,  its  main  drawback  is with  large
computational  complexity  and  not  suitable  for noise  correlation  condition,  which  limits  its  application  in
the  multi-sensor  measurement  system.  Aiming  at the  above  problem,  a  novel  multi-sensor  marginalized
particle  filter  based  on  average  weight  optimization  in  correlated  noise  is  proposed.  First,  marginalized
particle  filter  is  used  as  the  basic  framework  of  new algorithm  realization  by marginalizing  the  states
appearing  linearly  in  the dynamical  system,  and the  objective  is  to reduce  the calculated  amount.  Sec-
ond, considering  the rational  utilization  of  multi-sensor  measurement,  the  average  weight  optimization
strategy  is used  to improve  the  adverse  influence  caused  by  random  measurement  noise  in  measuring
process  of particles  weight.  Third,  combining  with  the  model  reconstruction  technology,  a new  decou-
pling  approach  of correlated  noise  is designed  in multi-sensor  measurement.  Finally,  the  theoretical
analysis  and  experimental  results  show  the feasibility  and  efficiency  of the proposed  algorithm.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Nonlinear filtering problems arise in many fields including
statistical signal processing, economics, statistics, and engineer-
ing such as communications, radar tracking, sonar ranging, target
tracking, and satellite navigation. It can be viewed as an optimal
filtering problem under a Bayesian framework, and the solving pro-
cess usually need to construct the posterior probability density
function (PDF) of estimated state on the basis of all the available
measurement information [1,2]. In recent years, the growth of com-
putational power has made computer intensive statistical methods
feasible. Based on the sequential importance sampling technique
and the recursive Bayesian filter principle, Particle filter (PF) give a
usefully approximate approach to obtain the posterior PDF based
on the Monte Carlo simulation. It represents the required PDF by
a set of random samples (particles) with associated weights and
computes estimated state based on these weighted particles [3].
Although PF is fairly easy to implement and tune, its main draw-
backs are with the particle degeneration problem and the greatly
computational complexity. Aiming at the particle degeneration
problem, some techniques have been developed to improve the
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performance of particle filter. These approaches includes the opti-
mization of proposal distribution [4,5], the construction of kernel
function [6] and some intelligent optimization methods [7,8], etc. In
order to reduce the calculation amount, marginalized particle filter
(MPF) gives a kind of good solution by marginalize out the states
appearing in the dynamical system, meanwhile, it constructs the
feedback mechanism between the estimated linear vector and the
nonlinear state vector [9]. Because of the construction of feedback
path, the estimation of linear state vector by Kalman filter (KF) with
the linear minimum-variance feature can be used to optimize the
estimation of nonlinear state vector by PF. Therefore, the filter pre-
cision of system state will be promoted undoubtedly relative to
the standard PF [10]. Unfortunately, the above achievements pay
close attention to the single sensor measurement system for the
moment, and combining with the characteristics of multi-sensor
measurement system, the study of design and application for PF is
relatively few.

In addition, we  known that the implementation of PF need to
be subject to some basic assumptions, it is important that the
system noise and the measurement noise are independent iden-
tically distributed. However, the coordinate conversion between
the target motion modeling and the measurement modeling in tar-
get tracking system, or the space transformation and registration
of distributed measurement inevitably all lead to the correlation
between the measurement noise and the system noise [11]. Aiming
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to the correlations between the system noise and the measurement
noise in nonlinear system, Chen and others design a kind of new
decoupling method by the rearrange the state transition equation
to a new one, and removes the correlation between noise [12]. They
make the decoupling method apply to the framework of PF and
improve the better filtering precision.

Based on the above analysis, a novel multi-sensor marginalized
particle filter based on average weight optimization in correlated
noise (MMPF-AWO) is proposed. The remaining of the paper is
organized as follows. First, the basic feature of MPF  is briefly
introduced in multi-sensor measurement in Section 1. Second,
the theoretical derivation on the optimization strategy of particle
weight and the decoupling method of correlated noise are, respec-
tively, given in Section 2. In addition, the construction process of
MMPF-AWO is given. Fourth, the experimental setup and simula-
tions is presented in Section 3. The final section lists the conclusions
and recommendations.

2. Marginalized particle filter in multi-sensor measurement

Consider the following nonlinear state space model with the
characteristics of multi-sensor measurement.
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the measurement noise. Only some sensors with same measure-
ment accuracy are considered in the construction of new algorithm,
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where z̄k denotes the pseudo measurement. Therefore, combining
with the above system model characteristic, KF can be applied to
the linear and Gaussian system described by Eqs. (2) and (4), and
PF can be applied to the linear system described by Eqs. (1) and
(3). The above are the modeling and filtering mechanisms of MPF
in multi-sensor measurement.

3. Multi-sensor marginalized particle filter based on
average weight optimization in correlated noise

3.1. The average weight optimization strategy of particle weight

The effective sampling of particles state and the reasonable
measurement of particles weight are considered as two important
aspects to improve filtering precision of PF. The effective samp-
ling key of particles state is to optimize the sampling particle by
the introduction of current measurement, the proposal distribution
optimization is considered as common solution. The reasonable
evaluation starting point of particles weight is as far as possibly
to reduce the adverse influence caused by random measurement

noise on the evaluating process of particles weight [13]. In view of
the characteristic of multi-sensor measurement system, it provides
objectively the necessary condition to improve the influence of
random measurement noise by the utilization of multi-sensor mea-
surement. According to the realization principle of PF, meanwhile,
combined with the construction of multi-senor measurement like-
lihood function and the average weight fusion principle, we  design
a new optimization method of particle weight in multi-sensor mea-
surement. The main idea is to promote the reliability and stability
of particle weight by decreasing weight variance.

First, the measurement likelihood function of sensor m is calcu-
lated by
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where xn
k,i

denotes particles which are sampled from the nonlinear
system, here i = 1, 2, . . .,  N and N→ ∞.  The weight of particle i is
evaluated by the measurement of sensor m.
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According to the expression of �k,i,m, it is can be known
as the constant when only particle i is considered. Next, com-
bined with Eq. (5), the merged measurement likelihood function
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Because the sensor accuracies are same, meanwhile the mea-
surement noise sequences are subject to independently identically
distribution (i.i.d). So the mean of �k,i,m can be supposed as �k,� , and
the mean of ωk,i,m and the mean of ω̂k,i are written as
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From the above result, we  find that the variance of ω̂k,i has been
reduced to 1/M of the variance of ωk,i,m.

3.2. The decoupling method of correlated noise

The correlation appeared on the system noise and the mea-
surement noise can be expressed by the covariance Cn

k,m between
them.
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