
Optik 126 (2015) 1067–1071

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

Modification of common Fourier computer generated hologram’s
representation methods from sequential to parallel computing

Ghaith Makey, Moustafa Sayem El-Daher ∗, Kanj Al-Shufi
Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria

a r t i c l e i n f o

Article history:
Received 2 February 2014
Accepted 12 February 2015

Keywords:
Computer generated holography (CGH)
Parallel processing
Fourier hologram

a b s t r a c t

The continuous improvement of GPUs for general purpose parallel computing has made it tempting to
modify many physical computational techniques from sequential to parallel computation. By adding
the capability of using CUDA-enabled GPU to MATLAB, a friendlier programming environment became
available to physicists and researchers for implementing GPU parallel computing in their scientific cal-
culations. This paper is dedicated to modify four methods of Fourier computer generated holography
to utilize parallel computation of GPU. discussion of benefits, limitations and a speed-up comparison is
presented.

© 2015 Elsevier GmbH. All rights reserved.

1. Introduction

GPUs have pushed the parallel computing implementation to
new levels; many algorithms and calculations were modified from
serial to parallel, where the main purpose for this modification is
speed-up. Actually whether we need this speed-up or not, paral-
lel computations will keep on spreading and we eventually have
to understand its algorithms to deal efficiently with this type of
computing.

When referring to speed-up, the computer generated holograms
(CGH) field looks like a good candidate which can benefit tremen-
dously because of the huge amount of calculations needed for its
computation [1]. In addition to that, parallel computing of opti-
cal problems like holography makes sense because of the parallel
physical nature behind the optical problems that deal with light
wavefronts.

The main problem of implementing GPU parallel computing
was the difficulty of its programming for many scientists even
when using simplified programming languages like CUDA, but with
the continuous improvement of MATLAB’s GPU integration this is
becoming less of a problem.

In this work we will explore the modification of four common
methods of Fourier CGH to parallel computation within MAT-
LAB environment. The methods are: Kinoform (with and without

∗ Corresponding author. Tel.: +963 11 33924790; fax: +963 11 211 9896.
E-mail address: eldaherm@scs-net.org (M.S. El-Daher).

diffuser stage), Detour phase (with and without diffuser stage), Lee
and Burckhardt [1,2].

2. Related work

Applying GPUs general purpose parallel computing in many
research areas was the subject of many publications in a variety
of scientific fields; we will concentrate our literature review only
to those related to CGH’s GPU parallel computations and those that
used MATLAB for GPU parallel computing.

In 2006, Masuda et al. [3] used Shader language and graphic API
to general in-line CGH by summing interferences patterns [4].

In 2009, Pan et al. [5] developed split look-up tables (S-LUT) and
implemented it on GPU to compute full parallax CGH; in this work
CUDA was used.

In 2010, Zschau et al. [6] introduced SeeReal’s Sub-Hologram-
technology where almost all calculations were done on GPU based
on Microsoft Direct3D 9. In the same year Shimobaba et al. [7] com-
pared AMD and NVIDIA GPUs in CGH generation, and the generation
method was the same as in reference [3].

In 2012, Reid et al. [8] provided a study on the challenges in using
GPUs for the reconstruction of digital hologram images where the
hologram itself was recorded by digital camera, their work was
done by CUDA and they got impressive speed-up. In the same year
Song et al. [9] used multi GPUs to speed up generation of CGH; they
used CUDA and OpenMP, and CGH was generated by same method
as [3] while implementing look-up table (LUT [10]).

In 2013, we [11] provided a method of using both CUDA and
MATLAB in a hyper approach to speed up the calculations of Detour

http://dx.doi.org/10.1016/j.ijleo.2015.02.076
0030-4026/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.ijleo.2015.02.076
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.02.076&domain=pdf
mailto:eldaherm@scs-net.org
dx.doi.org/10.1016/j.ijleo.2015.02.076

1068 G. Makey et al. / Optik 126 (2015) 1067–1071

phase; such an approach requires knowledge in CUDA program-
ming.

There are papers focused on speeding up other applications,
like image processing. Those methods were focused on the use of
CUDA kernels within MATLAB environment [12–14] (note that in
our approach there is no need to write CUDA kernels). Regarding
the same applications there are papers that used MATLAB as plat-
form for sequential calculations to be compared with CUDA parallel
computations [15,16].

Besides MATLAB’s Parallel Computing Toolbox (PCT), there are
papers (not related to CGH topics) that used third party toolboxes
for MATLAB GPU computing like Jacket and GPUmat [17,18]. In 2011
Zhang et al. [19] provided a comparison between Jacket, GPUmat
and PCT in GPU computing.

This paper differs from the previous work in both: its focus in
Fourier holograms, and its approach to use MATLAB-only program-
ming to access the parallel power of GPU (NVIDIA TESLA C2050).

3. Fourier holograms

To solve the representation problem of the complex field gen-
erated in Fourier hologram plane, there are a number of methods
which are commonly used [1,2]:

1. Kinoforms which depend only on the phases of Fourier
coefficients as they are considered to have the majority of infor-
mation about source image (object). By introducing a diffuser
stage (adding random phases) to source image, Kinoforms can
generate quiet accurate image for any object but paying the price
of having speckles.

2. Detour phase, as regarded by Goodman [2]: “The oldest and
perhaps the best known method for creating holograms from
computed complex fields”, Detour phase transfers every Fourier
coefficient of the complex field in hologram plane to a cell with
an aperture, the area of this aperture is proportional to the ampli-
tude of the coefficient and the aperture’s position within the
cell is proportional to the phase of this coefficient. By practice
and when applying this method on Spatial Light Modulators the
cell size will decrease the ability to represent the amplitude of
Fourier coefficients; to overcome that, adding diffusing stage like
in Kinoforms might make sense [20,21].

3. Lee: In this method each Fourier coefficient represented by a cell
contains 4 gray-level subcells; the first represents the real and
positive part of the coefficient, the second the imaginary and
positive part, the third the real and negative part and the last the
imaginary and negative part.

4. Burckhardt: In this method each cell contains 3 subcells with 3
gray-level phases one at 0◦, next at 120◦ and the last at 240◦.

4. Hardware specifications

The platform used is Windows 7. The CPU used is AMD
PhenomTM 9850 Processor 2.51 GHz. All baseline methods used on
the CPU are sequential. The GPU card used is NVIDIA TESLA C2050
with computing capability of 2, 448 thread processors and clock
value of 1.15 GHz.

5. GPU parallel computing with MATLAB

In MATLAB R2012a, Parallel Computing Toolbox V6.0 was pre-
sented. This toolbox has overcome many limitations which were
outlined in [19] and it is expected to be further improved in the
future. This toolbox requires the GPU to be included in CUDA 1.3
devices or more. When working with this toolbox, three major
options are available:

1. Using GPU arrays with MATLAB built-in functions.
2. Executing custom MATLAB functions on elements of GPU arrays.
3. Creating kernels from existing CUDA code and PTX files.

As our work is focused on the implementation of MATLAB only,
we have used both first and second options.

In addition to the options above, other third party toolboxes
may be used, mainly Jacket and GPUmat, but we preferred to work
with Mathworks toolbox as it is friendlier to MATLAB users and
expected to improve in next versions as it was greatly improved in
this version.

MATLAB parallel functions may be slower than those written
by CUDA; however working with MATLAB has many benefits in
prototyping and testing thanks to its variety of functions, toolboxes
and visualization methods.

6. Work procedure

6.1. Sequential computations

We wrote sequential function for the following Fourier CGH
methods:

1. Kinoform (the simplest of all methods).
2. Kinoform with diffusing stage.
3. Detour phase with cell size of 16 × 16.
4. Detour phase with cell size of 16 × 16 after adding diffusing stage

(both Detour phase methods were the heaviest on memory).
5. Lee.
6. Burckhardt.

The input is a grayscale bmp image with variable dimensions,
all the functions start with inverse Fourier transform and Fourier
shift functions, then each function differs according to its related
representation method. To verify the results we wrote a function
that calculates and shifts Fourier transform for the generated holo-
gram to plot the result image. Fig. 1 shows the source image while
Figs. 2–7 show simulation’s output images for each method.

Fig. 1. Source image for all sequential and parallel functions; only the resolution is
variable.

Fig. 2. Simulation result of illuminating the generated Kinoform. The results of
sequential and parallel computations were identical (color map is set to red). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/847297

Download Persian Version:

https://daneshyari.com/article/847297

Daneshyari.com

https://daneshyari.com/en/article/847297
https://daneshyari.com/article/847297
https://daneshyari.com

