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a  b  s  t  r  a  c  t

The  paper  presents  investigations  of  the  electromagnetic  characteristics  of  circular  waveguides  made of
uniaxial  anisotropic  chiral  medium;  the  outer  surface  of the  guide  being  coated  with  a  PEMC  (perfect
electromagnetic  conductor)  medium.  The  emphasis  is given  on the  energy  flux  density  patterns  of  such
guides  with  varieties  of anisotropic  chiral  materials.  Dispersion  relation  of  the guide is developed,  and
followed  by  the evaluation  of  sustained  modes,  which  determine  the  energy  flux  density  patterns  cor-
responding  to different  low-order  hybrid  modes.  The  flux  density  characteristics  provide  the  evidence
of  existing  backward  waves  in  uniaxial  anisotropic  mediums,  contributing  more  to  the  phenomenon  of
slow  light  in chiral  metamaterials.
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1. Introduction

Electromagnetic properties of a material can be described by
the electric permittivity and the magnetic permeability values,
which microscopically determine the effects due to the induced
electric and magnetic fields [1]. Extensive studies have been
reported on tailored composite structures to attain specific elec-
tromagnetic properties. Within the context, the development of
microstructured materials, that can effectively provide simulta-
neously negative values of permittivity and permeability over a
finite frequency range, have been of great interest. These materials
essentially exhibit negative refractive index [2].

Negatively refracting materials are of much technological need
owing to their having many fabulous characteristics and applica-
tions, especially in nanotechnology [3–5]. These are also called as
left-handed or double negative (DNG) materials owing their simul-
taneous negative values of permittivity and permeability. After the
idea of negative index materials put forward [2], DNG materials
were proposed with the conceptual understanding in designing
split ring resonators, conducting wires, loops and tubes of con-
ductors with inserted gaps [6]. Negative index metamaterials gain
exotic properties due to structures rather than compositions [7].

Chiral metamaterials have been greatly interesting as these
too owe the phenomena of negative reflection and/or refraction
through suitably controlling the chirality (coupling) parameter.
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These possess the properties of circular dichroism [8] and strong
optical activity [9], and essentially have advantages over DNG mate-
rials as these are easy to design and have more bandwidth.

In uniaxial anisotropic chiral metamaterials, chirality remains
unidirectional. These are easy to fabricate by placing miniature spi-
ral or conducting springs in the host dielectric medium [10,11].
Electromagnetic wave propagation through waveguides comprised
of chiral, uniaxial chiral and chiral nihility metamaterials have been
appeared in the literature [10–17]. Apart from these, the scattering
behavior of electromagnetic waves from PEMC based mediums has
been reported [18].

In this context, it is worth to state that the concept of PEMC was
proposed by Lindell and Sihvola [19], and the boundary conditions
in the case of PEMC medium are defined as

n̂ × ( �H + M�E)  = 0

where M represents a real scalar admittance. Also, PEMC is a gener-
alized case of perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) mediums. The cases M → ∞ and M → 0, respec-
tively, determine the situations corresponding to PEC and PMC
mediums.

In the present communication, efforts are put to explore
the propagation behavior of electromagnetic energy flux density
through a cylindrical waveguide with circular cross-section and
made of uniaxial anisotropic chiral metamaterial; the outer sur-
face of guide being coated with a PEMC medium. The nature of
energy flux density patterns corresponding to the propagating
hybrid modes is studied taking into account varieties of chiral struc-
tures. Investigations reveal that, for most of the propagating hybrid
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modes, the flux density remains more confined near the central
region of the guide, and the flux patterns greatly vary by varying
the type of chiral metamaterial in use. Furthermore, both the for-
ward and the backward wave propagations exist in the guide – the
latter one being as partially contributing to slow light propagation.

2. Theory

We  consider a circular waveguide as shown in Fig. 1. The core
section of guide is made of homogeneous and lossless uniaxial
anisotropic chiral metamaterial with the radial parameter a, and
loaded with a PEMC medium. Thus, the region with r ≤ a is com-
prised of chiral medium, and that with r > a is the PEMC medium.
The constitutive relations corresponding to uniaxial anisotropic
chiral mediums are prescribed as [20]

�D = [εtIt + εzûzûz] · �E − j�(ε0�0)
1
2 ûzûz · �H (1a)

�B = [�tIt + �zûzûz] · �H − j�(ε0�0)
1
2 ûzûz · �E (1b)

In these equations, ûz is the unit vector along the optical axis of
guide, � is the chirality parameter, εz and �z are, respectively, per-
mittivity and permeability of the medium along the longitudinal
axis of guide, and εt and �t are those along the transverse direction.

Furthermore, It is the unit dyadic defined as

It = x̂x̂ + ŷŷ.

Considering the harmonic form of the longitudinal component
of the excited electric field as comprised of Bessel function, one
may  write the decomposed form of the excited field in the chiral
medium as

e+z = AnJn(k+r) exp(jn�) (2a)

e−z = BnJn(k−r) exp(jn�) (2b)

where � represents the azimuthal coordinate, k is the wave vector
and Jn(·) is Bessel function of order n. Also, An and Bn are unknown
coefficients to be determined by the boundary conditions. Thus,
the total electromagnetic field inside the chiral medium will be
represented by the sum

e = e+ + e− (3a)

h = j

�
(e+ + e−) (3b)

with � as the impedance of chiral medium; e and h being the elec-
tric and the magnetic fields, respectively. Now, the electromagnetic

Fig. 1. Circular waveguide made of anisotropic chiral metamaterial with a PEMC
boundary.

fields can be decomposed into transverse and longitudinal compo-
nents as

e = (et + ẑez) exp(−jˇz) (4a)

h = (ht + ẑhz) exp(−jˇz) (4b)

where  ̌ is the propagation constant in the medium. Upon using
Maxwell’s field equations, it can be shown that the total longitu-
dinal components of electromagnetic fields will assume the forms
as

ez1 = [AnJn(k+r) + BnJn(k−r)] exp[j(n� − ˇz)] (5a)

and

hz1 = j

�t
[An˛+Jn(k+r) + Bn˛−Jn(k−r)] exp[j(n� − ˇz)] (5b)

Now, the total transverse components of the electromagnetic
field, as derived by the use of Maxwell’s equations and the longitu-
dinal field components, can be given as

er1 =
[

An

{
jnkt

�2r
˛+Jn(k+r) − jˇk+

�2
J′n(k+r)

}

+Bn

{
jnkt

�2r
˛−Jn(k−r) − jˇk−

�2
J′n(k−r)

}]
exp[j(n� − ˇz)] (6a)

hr1 =
[

An
1

�2�t

{
−nkt

r
Jn(k+r) + ˇk+˛+J′n(k+r)

}

+Bn
1

�2�t

{
−nkt

r
Jn(k−r) + ˇk−˛−J′n(k−r)

}]
exp[j(n� − ˇz)]

(6b)

e�1 =
[

An

{
nˇ

�2r
Jn(k+r) − kt˛+k+

�2
J′n(k+r)

}

+Bn

{
nˇ

�2r
Jn(k−r) − kt˛−k−

�2
J′n(k−r)

}]
exp

[
j(n� − ˇz)

]
(7a)

h�1 =
[

An
1

�2�t

{
jˇn˛+

r
Jn(k+r) − k+ktJ

′
n(k+r)

}

+Bn
1

�2�t

{
jˇn˛−

r
Jn(k−r) − k−ktJ

′
n(k−r)

}]
exp[j(n� − ˇz)]

(7b)

In these equations, prime represents the differentiation with
respect to the argument, and kt = ω

√
εt�t . Further

k2
± = �2

2

[
εz

εt
+ �z

�t
±

√(
εz

εt
− �z

�t

)2
+ 4�2 ε0�0

εt�t

]
(8)

Now, the eigenfunctions will be given as

(ez, hz) =
(

ez, j
˛

�t
ez

)
(9)

with  ̨ =
(

k2

�2
− εz

εt

)
√

εt�t/(k
√

ε0�0) �2 = ω2�tεt − ˇ2

and �t =
√

�t/εt
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