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This  research  aims  to  make  a comparison  between  the  analytical  and  numerical  methods  of  simula-
tion  of  the  Gaussian  beam  propagation  in  free  space.  This  comparison  brings  evaluation  of  the accuracy
and  applicability  limitations  of  the angular  spectrum  diffraction  algorithm.  In this  approach,  planar  har-
monic  waves  are  assumed  as basic  components  of  a propagating  wave,  so the algorithm  combines  the
angular  spectrum  technique  and  the 2D  fast  Fourier  transformation  procedures.  It means  a  quite differ-
ent  approach  than  the  well-established  Huygens–Fresnel–Rayleigh–Sommerfeld  one,  based  on  spherical
waves.  The  Gaussian  beam  is  a rare  case  of  the  exact  analytical  3D  solution  of a specific  wave  diffraction
problem,  in paraxial  scalar  approximation.  Gaussian  beam  form  has been  chosen  here  as  an  evaluation
reference.  It allows  to avoid  comparisons  between  two  numerical  procedures,  both  of  which  may  suffer
from  imperfections.  In this  comparison,  the respective  2D  cross-sections  of calculated  3D  complex  valued
wave  fields  distributions  are  presented.  Also  values  of specific  Gaussian  beam  parameters  like  full  phase
and Gouy  phase  shift  and  wave-front  curvature  radius  are  presented.  The comparison  between  that  form
and  the  results  of  the  angular  spectrum  algorithm  brings  information  about  the  performance  quality  of
that algorithm.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The advent of the laser in the early sixties of the 20th century
has led to applications of that new kind of light source in multi-
ple fields of science and engineering [1]. Basic laser mode form,
denoted as TEM00 and its mathematical representation known as
the Gaussian beam is commonly used in theoretical and experi-
mental optics by many researchers [2–5]. Such beam is described
through a unit electric field vector multiplied by a scalar, in general
complex, function that satisfies the paraxial scalar wave equation
[6–8]. That distribution is obtained as the basic eigenmode solu-
tion of the axially symmetric laser cavity [9]. In the optical field
theory development there exist several ways of diffraction field
calculations based on the Huygens principle, with the spherical
wave playing the role of elementary solution of the wave equation.
Those are known as Fresnel diffraction (near-field) [10], Fraunhofer
diffraction (far-field) [11] with several modifications introduced by
Rayleigh, Sommerfeld [12] and among Polish authors Rubinowicz
[13]. In contrast, the angular spectrum (AP) approach is based on
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decomposition of the optical field in to planar waves [14]. Diffrac-
tion integrals, that were earlier solved analytically only for some
special cases, are then calculated numerically but still with high
computing costs. The fast Fourier transform (FFT) algorithm redis-
covered by Cooley and Tukey [15] in 1965 dramatically reduced
numerical operation counts of the discrete Fourier transformation
(DFT). The Fresnel diffraction integral can be viewed as 2D convo-
lution of the initial optical field distribution with the propagation
function, and may  be effectively calculated with the application of
the Fourier-convolution theorem [16]. The AS technique makes use
of the Fourier decomposition of the initial optical field to elemen-
tary wave equation solutions in the form of planar waves, and then
after propagation, their Fourier superposition [17].

In this paper we  focus on the numerical modeling of Gaussian
beam propagation between the initial plane at z = 0 and the par-
allel observation plane at z. The AS results are compared with the
closed form of the Gaussian beam obtained theoretically from the
paraxial scalar Helmholtz wave equation [18]. Discussed here AS
algorithm allows for calculation of the optical field diffraction at
the short distance, starting from just behind the object [19–23].
2D FFT algorithm is applied here first to achieve the AS repre-
sentation of the initial field distribution and then the inverse 2D
FT, to obtain superposition of all propagated planar wave compo-
nents in the observation plane. Both of those transformations are
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performed by use of the application of 2D FFT algorithm, so the
whole numerical procedure will be called here the AS FFT algo-
rithm. The application of two 2D FFTs in that algorithm highly
reduces the computation time, but one has to keep in mind that on
the other hand the discrete nature of the FFT and the limited domain
of the FFT algorithm may  influence the accuracy of the AS FFT results
and limit applicability of that algorithm. Such limitations are stud-
ied here through the comparison of the AS FFT algorithm results of
Gaussian beams propagation with respective closed form solutions
of the paraxial scalar Helmholtz wave equation.

2. Angular spectrum algorithm

2.1. Planar wave spectrum propagation

Let us assume that the light propagates in free space between
two planes: the first plane which is located at z = 0 to the second
plane parallel to the first one at some other z > 0. Such wave can be
decomposed in 3D to monochromatic plane wave components [24]
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Let the initial optical field distribution be described through 2D
complex amplitude E0(x, y; z = 0). It can be decomposed into spatial
harmonics by 2D FT
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This set of harmonics is usually called “the angular spectrum” of
the initial field [25]. In propagating wave, every harmonics evolves
with the distance

Ẽ0
(

�x, �y; z
)

= Ẽ0
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The waves superposition at the distance z > 0 can be obtained
by the inverse 2D FT
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In the case of high spatial frequencies, the value under the root
square becomes negative and the component related to them is an
evanescent wave that decays fast with the distance z. So for the
propagation distance z greater than few wavelengths, it is enough
to consider domain �2

x + �2
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This approximation considerably simplifies the analytical inte-
gration of the AS Fourier integral, which gets the form
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2.2. Numerical AS algorithm performance conditions

The whole procedure represented by Eq. (6) involves two con-
secutive 2D FTs: first forward and after propagation inverse. The
domain of integration in the first FT may  be limited to the area |x|<
Lx and |y|< Ly related to the initial field support. It has to be also
assumed that E0(x, y; z = 0) is band limited in the (vx, vy) with
2Bx and 2By representing the widths respectively in the vx and
vy directions. According to the Whittaker–Shannon theorem, the
band limited function may  be fully represented in discrete repre-
sentation if its sampling frequency is higher than 2Bx and 2Bx in
respective directions. Then the total number of significant samples
required to represent E0(x, y; z = 0) is [17]:

M = 16LxLyBxBy (9)

Assuming Lx = Ly = L and Bx = By = B full representation of E0(x,
y; z = 0) requires a complex valued array of N × N, with N = LB.
For example, to represent numerically a typical experimental ini-
tial distribution, with L = 1 cm and B = 1/ �m,  one would need the
array of about 10 000 by 10 000 samples. That means 108 complex
values or about 1GB of memory in the case of the float precision
representation.

By the fulfillment of limited support and bandwidth conditions,
both FTs in Eq. (6) can be performed numerically with the applica-
tion of the 2D FFT algorithm [15]. The quality of such procedure will
be checked further in reference to the finite form of a well-known
Gaussian mode in 3D.

2.3. Gaussian beam form

There are several parameters related to the Gaussian beam
distribution, but only two  of them are considered as indepen-
dent. Those are the size of the beam waist W0 and the light
wavelength �.

The beam waist radius W0 defines the size of the beam at its
symmetry plane z = 0, where complex amplitude is given in the form

EG (x, y, z = 0) = E0 exp
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]
, (10)

where, W0 is the beam waist radius, and E0 is the peak electric field
amplitude at the axis.

Light field of the wavelength �, or wave number k = 2�/�, that
at z = 0 is described by Eq. (10), propagates into the third dimension
and the solution of the diffraction problem in this case gives finite
form of the complex amplitude distribution known as the Gaussian
beam [26]:
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