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a  b  s  t  r  a  c  t

This  paper  is concerned  with  the  exponential  synchronization  of the  chaotic  system  without  linear  term
and  its  application  in secure  communication.  The  synchronization  analysis  is carried  out  by exponential
stability  theorem.  Also  secure  communication  is obtained  by  masking  method  and  parameter  modula-
tion  between  transmitter  and  receiver.  The  error  system  exponentially  is converged  to  zero.  Numerical
simulations  are  presented  to  illustrate  the ability  and  effectiveness  of  proposed  method.
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1. Introduction

Chaos, which is an interesting phenomenon in nonlinear
dynamical systems, has been studied over the last four decades
[12,15,19,20,24,25]. Chaotic and hyperchaotic systems are nonlin-
ear deterministic systems that display complex and unpredictable
behavior. Also these systems are sensitive respect to initial
conditions. The chaotic and hyperchaotic systems have many
important applications in nonlinear sciences, such as laser
physics, secure communications, nonlinear circuits, control, neu-
ral networks, chemical reactor and active wave propagation
[4,10,12,13,17,18,21,22].

The synchronization of chaotic systems has been investigated
since its introduction in the paper by Pecora and Carrol in 1990
[20] and has been widely investigated in many fields, such as
physics, chemistry, ecological sciences and secure communications
[2,11,24]. Various techniques and methods have been proposed to
achieve chaos synchronization, such as adaptive control, impul-
sive control, active control and nonlinear control and exponential
method [1,5,6,23]. Fortunately, some existing methods of syn-
chronizing can be generalized to anti-synchronization of chaotic
systems [1,3,16].

Most of mentioned approaches to achieve the chaotic synchro-
nization are based on the asymptotical stability that is provided by
Lyapunov stability theorem. Exponential stability [14] is a stronger
type of stability which is compared with asymptotical stability. Liao
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and Yu [6], Yan and Yu [7] studied the exponential synchronization
of the family Rössler dynamical systems. In 2009, Sun [9] used the
exponential synchronization between two  classes of chaotic sys-
tems. Yang in 2013 used it for exponential synchronization of a
four-dimensional chaotic system [5].

Since 1992, secure communication based on synchronization of
chaotic dynamical systems has been developed. The general idea for
transmitting information via chaotic systems is that, an information
signal is embedded in the transmitter system which produces a
chaotic signal. The sending information signal, is recovered by the
receiver system.

The techniques of chaotic communication include chaos mask-
ing, chaos modulation and chaos shift keying. The idea of chaos
masking is that the information signal is added directly to the
transmitter. Chaos modulation is based on the master-slave syn-
chronization, where the information signal is injected into the
transmitter as a nonlinear filter. Chaos shift keying is supposed the
information signal to be binary, and it is mapped into the transmit-
ter and the receiver. In these three cases, the information signal can
be recovered by a receiver, if the transmitter and the receiver were
synchronized [26,30,31].

In 1993, Cuomo et al. [27] developed the additive chaos masking
approach. Dedieu et al. [28] presented the chaotic shift key-
ing or the chaotic switching approach in 1993. Then in 1996,
Yang and Chua [32] introduced the chaotic parameter modula-
tion method, where the information signal is used to modulate
the parameters of the chaotic system in the transmitter. Yang
et al. [29] introduced a novel secure communication scheme. In
this scheme, the information signal is encrypted by an encryp-
tion rule with a key generated from the chaotic system in the
transmitter.
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Recently, several new chaotic systems were introduced. The
synchronization of these systems via novel schemes was  discussed,
then this systems with new synchronization methods were used for
secure communication based on chaotic systems [33–36].

A new chaotic system without linear term and its impulsive
synchronization was introduced in [8]. This paper investigates the
exponential synchronization of the chaotic system without linear
term and its application in secure communication. Synchronization
of this system is based on the exponential stability theorem.

The rest of the paper is organized as follow. Section 2 briefly
introduces the chaotic system without linear term and describes
the exponential synchronization. Section 3, investigates the secure
communication via masking and modulation method, based on
exponential synchronization. Concluding remarks are given in Sec-
tion 4.

2. Exponential synchronization of chaotic system without
linear term

In 2014, Y. Xu and Y. Wang [8] introduced a new chaotic system
without linear term, as follows:⎧⎪⎨
⎪⎩

˙x1 = ln(a + ex2−x1 )

˙x2 = x1x3

˙x3 = b − x1x2,

(2.1)

where x1, x2 and x3 are the state variables and a and b are real
parameters. By choosing a = 0.1, b = 0.25 the system (2.1) is chaotic.
For further information about the (2.1) see [8].

Suppose (2.1) is the master system and define slave system, as
follow:⎧⎪⎨
⎪⎩

ẏ1 = ln(a + ey2−y1 ) + u1

ẏ2 = y1y3 + u2

ẏ3 = b − y1y2 + u3,

(2.2)

where ui(1 = 1, 2, 3) are control functions.
Let e = y − x is the error vector of states, then the error system is:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
˙e1 = ln

(
a + ee2−e1 ex2−x1

a + ex2−x1

)
+ u1

˙e2 = e1e3 + e1x3 + e3x1 + u2

˙e3 = −(e1e2 + e1x2 + e2x1) + u3.

(2.3)

In what follows, the exponential synchronization and require-
ment Lemmas are presented.

Definition 2.1. [5]. The slave system (2.2) exponentially synchro-
nizes with the master system (2.1) for any initial condition, if the
solution of the error system (2.3) has the following estimation

E(t)ET (t) ≤ A exp(−�(t − t0)),

where E(t) = [e1(t), e2(t), e3(t)], A is a positive constant depending
on the initial value E(t0), and � is positive constant independent
of E(t0) and is named the exponential convergence rate. Then, the
zero solution of system (2.3) is exponentially stable and systems
(2.2) and (2.1) are called exponential synchronization.

Lemma  2.2. [14,5]. For the error system (2.3), if there is an existed
positive definite quadratic polynomial V(E(t)) ≡ V(t) such that

ω1ET (t)E(t) ≤ V(t) ≤ ω2E(t)E(t)T (2.4)

V̇(t) ≤ −ω3E(t)E(t)T , (2.5)

where ω1, ω2, ω3 are positive constants and ω1 ≤ ω2, then the zero
solution of system (2.3) is exponentially stable and systems (2.2) and
(2.2) are called exponential synchronization.

Lemma  2.3. [5]. For any � ∈ R
+;X, Y ∈ R, the inequality

2|X||Y| ≤ �X2 + �−1Y2 holds.

Theorem 2.4. The master system (2.1) and the slave system (2.2)
are exponential synchronized with feedback controls⎧⎪⎨
⎪⎩

u1 = −(M + 2k1e1)

u2 = −k2e2

u3 = −k3e3,

(2.6)

where constant M and the feedback gains ki > 0(i  = 1, 2, 3) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M > ln

(
a + ee2−e1 ex2−x1

a + ex2−x1

)

k1 >
1
2

(
M3

�1
+ M2

�2

)
k2 >

1
2

M3�1

k3 >
1
2

M2�2,

(2.7)

where �i(i = 1, 2) are positive constant and |xi| < Mi(i = 1, 2, 3).

Proof. Let the quadratic function candidate be define as

V(t) = 1
2

(
1
2

e2
1 + e2

2 + e2
3

)
= EPET (2.8)

where the matrix P = diag
(

1
4 , 1

2 , 1
2

)
is diagonal and positive definite.

Taking the time derivative of (3.16) along the error of state system, the
control law (2.6), it yields

V̇(t) = 1
2

e1 ė1 + e2 ė2 + e3 ė3

= 1
2

e1(ln

(
a + ee2−e1 ex2−x1

a + ex2−x1

)
+ u1) + e2(e1e3 + e1x3 + e3x1 + u2)

+e3(−(e1e2 + e1x2 + e2x1) + u3).

(2.9)

Assume ln
(

a+ee2−e1 ex2−x1

a+ex2−x1

)
< M,  |xi| < Mi(i = 1, 2, 3) and apply (2.6)

in (2.9), we have:

V̇(t) < −(k1e2
1 + k2e2

2 + k3e2
3) + x3e2e1 − x2e3e1

< −(k1e2
1 + k2e2

2 + k3e2
3) + M3|e2||e1| + M2|e3||e1|.

(2.10)

From lemma 2.3, for any �1, �2 > 0, can be got

V̇(t) < −(k1e2
1 + k2e2

2 + k3e2
3) + M3

2
(�1e2

2 + �−1
1 e2

1) + M2

2
(�2e2

3 + �−1
2 e2

1)

=  −e2
1

(
k1 − M3

2�1
− M2

2�2

)
− e2

2

(
k2 − M3�1

2

)
− e2

3

(
k3 − M2�2

2

)
.

(2.11)

By chosen Ki > 0 as follow⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1 >
M3

2�1
+ M2

2�2

k2 >
M3�1

2

k3 >
M2�2

2
,

(2.12)

we have

V̇(t) < −˛EET , (2.13)

where  ̨ = min{k1 − M3
2�1

− M2
2�2

, k2 − M3�1
2 , k3 − M2�2

2 }.
According to Lemma 2.2, the inequality (2.13) implies that system

(2.2) exponentially synchronizes with system (2.1). �

Example 2.5. To demonstrate and verify the validity of the pro-
posed scheme, we present and discuss the numerical results for
exponential synchronization. For synchronization systems (2.1)
and (2.2) with controllers (2.6) are solved numerically by Matlab.
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