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a  b  s  t  r  a  c  t

In  this  paper,  the impulsive  synchronization  problem  of  Lü chaotic  systems  is  investigated  by  using a
novel  hybrid  controller.  The  proposed  hybrid  controller  is  composed  of  a single  controller  and  impulsive
controller.  Using  the  impulsive  theory  and  the  novel  hybrid  controller,  some  sufficient  conditions  are
derived  for  the  synchronization  of  Lü  chaotic  systems.  Numerical  simulation  example  is provided  to verify
the  effectiveness  of  the  proposed  approach.  The  simulation  results  show  that the proposed  control  scheme
has  a fast  convergence  rate compared  with  the  conventional  single  controller  method  and  impulsive
controller  method.
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1. Introduction

In the past years, different synchronization schemes have been
proposed for achieving the synchronization of chaotic system, such
as linear and nonlinear feedback synchronization [1,2], adaptive
synchronization [3–6], observer based control method [7,8], and so
on.

Recently, similar to pinning control of complex dynamical
networks, different control schemes of the chaotic system have
been proposed by controlling one component of the chaotic sys-
tem, that is, the proposed controller is a single controller [9–16].
Among the existing publications, some papers focused on ‘pinning
control’ on chaotic systems by the idea of linear feedback control
or adaptive control. On the other hand, impulsive control strategies
have been widely used to synchronize coupled chaotic dynamical
systems due to their potential advantages over general continuous
control schemes [17–24]. What is more, the impulsive controller
usually has a relatively simple structure. Its necessity and impor-
tance lie in that, in some cases, the system cannot be controlled
by continuous control. Additionally, impulsive control may  give a
more efficient method to deal with systems that cannot endure
continuous disturbance. Furthermore, impulsive method can also
greatly reduce the control cost.
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It is worthwhile pointing out that in most recent results
appearing in the literature dealing with the stabilization or syn-
chronization of chaotic systems by impulsive control or linear
and nonlinear feedback control. In this paper, the impulsive
synchronization problem of Lü chaotic systems is investigated
by using a novel hybrid controller. The proposed hybrid con-
troller is composed of a single controller and impulsive controller,
the proposed hybrid control scheme has faster convergence
rate.

This work is organized as follows: Section 2 gives the theoretical
analyses. In Section 3, numerical example is used to show the imple-
mentation of the proposed scheme. Section 4 gives the conclusion
of the paper.

2. Theoretical analyses

Suppose the chaotic system in general form as follows

ẋ = f (t, x), (1)

where x = (x1, x2, . . .,  xn)T ∈ Rn, f(x) = (f1(x), . . . fn(x))T : R+ × Rn → Rn

is continuous. Suppose that a discrete instant set {tk} satisfies

t0 < t1 < · · ·tk < · · ·,  lim
k→∞

tk = ∞.

Let

�x|t=tk
x(t+

k
) − x(tk) = Ik(x),

http://dx.doi.org/10.1016/j.ijleo.2015.11.138
0030-4026/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.ijleo.2015.11.138
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.11.138&domain=pdf
mailto:yuhuaxu2004@163.com
mailto:luyajuan66@126.com
dx.doi.org/10.1016/j.ijleo.2015.11.138


2576 Y. Xu et al. / Optik 127 (2016) 2575–2578

where x(t+
k

) = limt→t+
k

x(t), x(tk) = limt→t−
k

x(t) = x(t−
k

), then an

impulsive system is given by
⎧⎪⎨
⎪⎩

ẋ = f (t, x), t /= tk,

�x = Bkx, t = tk,

x(t+
0 ) = x0, k = 1, 2, . . .,

(2)

Now, we consider bidirectionally coupled impulsive control of
Lü chaotic systems [25] in the form as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1), t /= tk,

ẋ2 = −x1x3 + cx2, t /= tk,

ẋ3 = x1x2 − bx3, t /= tk,

�x = Bk(x − y) = −Bke, t = tk,

(3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ1 = a(y2 − y1), t /= tk,

ẏ2 = −y1y3 + cy2 + u, t /= tk,

ẏ3 = y1y2 − by3, t /= tk,

�y = Bk(y − x) = Bke, t = tk,

(4)

where (a, b, c) = (36, 20, 3), the single controller
u = − k1e1 − k2e2 − k3e3, ki ∈ R, i = 1, 2, 3, then the error impulsive
systems as follows.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = a(e2 − e1), t /= tk,

ė2 = −y1e3 − x3e1 + ce2 − k1e1 − k2e2 − k3e3, t /= tk,

ė3 = y1e2 + x2e1 − be3, t  /= tk,

�e = 2Bke, t = tk,

(5)

where e = (e1, e2, e3)T = (y1 − x1, y2 − x2, y3 − x3)T.
The objective is to find some conditions on the control gains,

Bk and the impulsive distances tk − tk−1, k = 1, 2, . . . , such that the
impulsive system (5) is asymptotical stable at origin.

Theorem 1. If there exists two constants � ≥ 1, � > 0 and
�k = �max[(I + 2Bk)TQ(I + 2Bk)Q−1], then systems (3) and (4) can real-
ize impulsive synchronization using the following form (1)–(3):

(1)

⎛
⎝

−  ̨ 0 0

0 −ˇ  0

0 0 −�

⎞
⎠ < 0

(2)

⎛
⎜⎝

−2a  ̨ − �  ̨ a  ̨ + ˇ
∣∣X3

∣∣ − ˇk1 �
∣∣X2

∣∣
� 2c  ̌ − 2ˇk2 − �  ̌ (  ̌ + �)

∣∣Y1

∣∣ − ˇk3

� � −2b� − ��

⎞
⎟⎠ < 0

(3) ln ��k + �(tk − tk−1) ≤ 0

where Q = diag(˛, ˇ, �), ˛, ˇ, � ∈ R+,
∣∣X2

∣∣, ∣∣X3

∣∣ and
∣∣Y1

∣∣ are the
upper bounds of the absolute values of the states x2, x3 and y1, �
denotes the symmetric terms.

Proof. Let the candidate Lyapunov function be in the form of

V(e) = eT Qe = ˛e2
1 + ˇe2

2 + �e2
3.

The time derivative along the trajectory (5) is:

V̇(e) = 2˛ė1e1 + 2ˇė2e2 + 2�ė3e3 = 2˛e1[a(e2 − e1)]

+ 2ˇe2[ce2 − x3e1 − y1e3 − k1e1 − k2e2 − k3e3]

+ 2�e3(y1e2 + x2e1 − be3) = 2a˛e1e2 − 2a˛e2
1 + 2cˇe2

2

− 2ˇy1e2e3 − 2ˇx3e1e2 − 2ˇk1e1e2 − 2ˇk2e2
2 − 2ˇk3e2e3

+ 2�y1e2e3 + 2�x2e1e3 − 2�be2
3 ≤ 2a˛e1e2 − 2a˛e2

1

+ 2cˇe2
2 + 2ˇ |y1| e2e3 + 2ˇ |x3| e1e2 − 2ˇk1e1e2 − 2ˇk2e2

2

− 2ˇk3e2e3 + 2� |y1| e2e3 + 2� |x2| e1e3 − 2�be2
3 ≤ 2a˛e1e2

− 2a˛e2
1 + 2cˇe2

2 + 2ˇ |y1| e2e3 + 2ˇ |x3| e1e2 − 2ˇk1e1e2

− 2ˇk2e2
2 − 2ˇk3e2e3 + 2� |y1| e2e3 + 2� |x2| e1e3

− 2�be2
3 ≤ 2a˛e1e2 − 2a˛e2

1 + 2cˇe2
2 + (2ˇ  + 2�)

∣∣Y1

∣∣ e2e3

+ 2ˇ
∣∣X3

∣∣ e1e2 − 2ˇk1e1e2 − 2ˇk2e2
2 − 2ˇk3e2e3

+ 2�
∣∣X2

∣∣ e1e3 − 2�be2
3 = �eT

⎛
⎝

 ̨ 0 0

0  ̌ 0

0 0 �

⎞
⎠ e

+ eT

⎛
⎜⎝

−2a  ̨ − �  ̨ a  ̨ + ˇ
∣∣X3

∣∣ − ˇk1 �
∣∣X2

∣∣
� 2c  ̌ − 2ˇk2 − �ˇ (ˇ + �)

∣∣Y1

∣∣ − ˇk3

� � −2b� − ��

⎞
⎟⎠

× e ≤ �eT

⎛
⎝

˛ 0 0

0  ̌ 0

0 0 �

⎞
⎠ e = �eT Qe = �V(e(t)).

This implies that

V(e(t)) ≤ V(e(t+
k−1)) exp(�(t − tk−1)), t ∈ (tk−1, tk], k = 1, 2, . . .

Now from (5), we have

V(e(t+
k

)) = [(I + 2Bk)e]T Q (I + 2Bk)e

= eT [(I + 2Bk)T Q (I + 2Bk)Q−1]Qe ≤ �keT Qe = �kV(e(tk)).

When t ∈ (t0, t1], V(e(t)) ≤ V(e(t+
0 ))exp(�(t − t0)), then

V(e(t1)) ≤ V(e(t+
0 ))exp(�(t1 − t0)).

So,

V(e(t+
1 )) ≤ �1V(e(t1)) ≤ �1V(e(t+

0 ))exp(�(t1 − t0)).

In the same way for t ∈ (t1, t2], we have

V(e(t)) ≤ V(e(t+
1 ))exp(�(t − t1)) ≤ �1V(e(t+

0 ))exp(�(t − t0))

In general for any t ∈ (tk, tk+1], one finds that

V(e(t)) ≤ V(e(t+
0 ))�1�2· · ·�kexp(�(t − t0)).

Thus for ∀t ∈ (tk, tk+1], k = 1, 2, . . . , we have

V(e(t)) ≤ V(e(t+
0 ))�1�2· · ·�k exp(�(t − t0)) ≤ V(e(t+

0 ))�1�2· · ·�k

exp(�(tk+1 − t0)) = V(e(t+
0 ))�1 exp(�(t2 − t1))�2

exp(�(t3 − t2))· · ·�k exp(�(tk+1 − tk))exp(�(t − t0)).

From the assumptions given in the theorem
�k exp(�(tk+1 − tk)) ≤ 1

�
, k = 1, 2, . . .,  we have

V(e(t)) ≤ V(e(t+
0 ))

1
�k

exp(�(t − t0)).

That is V(e(t)) ≤ V(e(t+
0 ))(1/�k)exp(�(t − t0)), t ≥ t0.

When � ≥ 1, from Ref. [26], this implies that the origin in system
(5) is globally asymptotically stable or the slave system is syn-
chronized with the master system asymptotically for any initial
conditions. By this we conclude proof of the theorem.
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