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Cardiac electrophysiologymodels have been developed for over 50 years, and now include detailed descriptions
of individual ion currents and sub-cellular calcium handling. It is commonly accepted that there are many
uncertainties in these systems, with quantities such as ion channel kinetics or expression levels being difficult
to measure or variable between samples. Until recently, the original approach of describing model parameters
using single values has been retained, and consequently the majority of mathematical models in use today
provide point predictions, with no associated uncertainty.
In recent years, statistical techniques have been developed and applied inmany scientific areas to capture uncer-
tainties in the quantities that determine model behaviour, and to provide a distribution of predictions which
accounts for this uncertainty. In this paper we discuss this concept, which is termed uncertainty quantification,
and consider how it might be applied to cardiac electrophysiology models.
We present two case studies in which probability distributions, instead of individual numbers, are inferred from
data to describe quantities such as maximal current densities. Then we show how these probabilistic represen-
tations of model parameters enable probabilities to be placed on predicted behaviours. We demonstrate how
changes in these probability distributions across data sets offer insight into which currents cause beat-to-beat
variability in canine APs. We conclude with a discussion of the challenges that this approach entails, and how
it provides opportunities to improve our understanding of electrophysiology.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Models of the cardiac action potential (AP) are established, valuable,
and important research tools because they integrate biophysical mecha-
nisms quantitatively, and so have explanatory and predictive power.
Since the publication of the first cardiac AP model over 50 years ago
[31] these models have become more detailed as our knowledge of the
function of ion channels, pumps, and exchangers in cardiac myocytes
has increased [11]. Contemporary models are sufficiently detailed to

allow the effects of ion channel gene mutations, pharmaceuticals, and
disease to be examined in mechanistic detail [41], [28]. However, while
the present generation of models are powerful tools, model parameters
are generally assigned a fixed value, which means that the models pro-
duce a fixed prediction.

In contrast, the experimental APs recorded from real cardiac cells are
variable, with changes from beat-to-beat in a single cell (termed intrin-
sic variability), and from one cell to another (extrinsic variability).
Intrinsic variability may be caused by random processes such as sto-
chastic ion channel gating, non-linear dynamics such as alternans of ac-
tion potential duration (APD), or more complex behaviour. Extrinsic
variability is considered to be caused by quantities that genuinely vary
from cell to cell, e.g. cell size or ion channel expression. In practice it
can be difficult to distinguish these sources of variability; in what fol-
lows we model variability as extrinsic only, although some of our data
may also capture intrinsic variability. In addition, variability can be
compounded by measurement errors when data from experiments
are used to generate parameters for use in AP models.
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Abbreviations: AP[D], Action Potential [Duration]; CMA–ES, Covariance Matrix
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Problems related to uncertainty and variability are not unique to car-
diac electrophysiology, and new approaches are beginning to emerge
from areas as diverse as models of the atmosphere [24] and galaxy for-
mation [47]. In this paper we describe how these approaches might be
applied to cardiac AP models.

1.1. Uncertainty quantification and cardiac action potential models

There are several potential sources of uncertainty in a computational
model of a real system; these include, at least, the following [47]:

• Observational uncertainty is uncertainty or measurement errors in ex-
perimental data. For example, uncertainty represented by error bars
in measurements of the current–voltage profile for a particular ion
channel used to assign model parameters, or error bars in measure-
ments of APD restitution used to evaluate model performance. Note
that this uncertainty can encapsulate both intrinsic and extrinsic vari-
ability.

• Parameter uncertainty refers to uncertainty in model parameters,
which may be a consequence of observational uncertainty as well as
variability, or simply lack of information. It may be advantageous to
express a model parameter (such as a maximal conductance) as a
random variable with a distribution, rather than a fixed value.

• Condition uncertainty describes our uncertainty about the initial condi-
tions and boundary conditions. For a cardiac AP model the initial con-
ditions are typically set by running the model until it has reached a
steady state, but this will not capture the constantly varying environ-
ment of temperature, ion concentrations, and metabolism in which a
real cell operates.

• Structural uncertainty accounts for the differences between a model
and the real system that it represents. For example, a model of an ion
channel will not be an exact representation of the biophysical dynam-
ics of a population of proteins in the membrane, and structural uncer-
tainty aims to quantify this difference.

• Simulator uncertainty addresses the uncertainty introduced when
using an approximation to the true solution of the equations of
the mathematical model when we perform a simulation. This in-
cludes any uncertainty introduced by using discretisation in nu-
merical methods (numerical error), or uncertainty when a fast-
running surrogate model (e.g. an emulator) is used approximate
the outputs of a computational model that is expensive to solve.

Techniques for uncertainty quantification (UQ) provide a means to
deal with these different sources of uncertainty. In this paper we con-
centrate on UQ methods that address parameter and condition uncer-
tainty, which will also concern observation and simulator uncertainty.
Statistical methods for structural uncertainty can be complex and are
outside the scope of this paper. Such techniques attempt to statistically
quantify the ‘model bias’, the difference between model and experi-
ment; the interested reader may refer to [22].

There are two stages toUQ related to parameter/conditionuncertainty
(for claritywe only refer to parameters below, but the same ideas apply to
initial or boundary conditions, though these may be more difficult to
measure):

1. Uncertainty characterisation regards uncertainty in model inputs. In
this stage uncertainty in parameters is characterised by assigning
probability distributions to input parameters instead of single values,
although sometimes simple statistics (i.e. means and variances) are
used. If the input is a parameter that is directly measurable, this is a
purely experimental task because the probability distribution is in-
formed by the experimental observations. On the other hand, if the
input is a parameter that is indirectly inferred from other data, statis-
tical methodsmay be required to estimate the parameter uncertainty
(examples will be provided in this paper).

2. Uncertainty propagation (or uncertainty analysis) regards uncertainty
in model outputs. Here the aim is to establish the uncertainty in

model outputs due to the uncertainty in inputs, again as probability
distributions or simple statistics. Generally, this stage is very
computationally-demanding, since a large number of simulations
are needed to generate outputs for the different combinations of in-
puts that are possible. Sophisticated methods have been developed
to mitigate such difficulties, as will be illustrated in this paper

Interest in UQ has grown as part of a drive for rigorous and formal
approaches to assess the credibility of computational models. The
heavy use of computational models for safety-critical applications in
the automotive, aerospace, nuclear and structural engineering indus-
tries in particularmotivated thedevelopment of ‘Verification, Validation
and Uncertainty Quantification’ (VVUQ), which forms a set of method-
ologies, frameworks and best practises for improved assessment of the
reliability and robustness ofmodel predictions [30], [33]. In this context,
verification is defined as the process of confirming that a computational
model (software) correctly implements an underlying mathematical
model, and validation compares a model's predictions with reality. Al-
though UQ forms part of the overall VVUQ process, each of the stages
are intertwined, and in particular UQ improves the ability to perform
validation, since understanding the uncertainty inmodel predictions fa-
cilitates comparison with experimental results.

Until recently, VVUQ has not been a priority for cardiac modelling,
because this type of model has not been widely used in high-risk or
safety-critical applications. However, the present generation of cardiac
AP models are sufficiently detailed that there is the prospect that they
could be used as both as part of clinical applications and also for drug
safety assessment. Both of these applications are safety critical. For clin-
ical applications themodel output could be guidance for ablation in clin-
ical procedures, and the inputs would include personalised measures of
tissue conductivity and anatomy [46]. For safety testing in drug devel-
opment, the output could be ameasure of action potential prolongation,
and the inputs would include a quantification of the reduction of differ-
ent ion currents as a function of compound concentration [27]. In both
types of application it will be important to express a measure of confi-
dence in themodel outputs, given uncertainties and errors in the inputs.
As a result, there has been growing interest and application of (VV)UQ
in cardiac modelling [14], [10], [36], [37], [38].

In [38] Pathmanathan et al. quantified the natural variability in the
steady-state inactivation of the canine fast sodium channel using a sta-
tistical framework known as Non-Linear Mixed Effects (NLME) model-
ling. The authors examined the consequences of this uncertainty at
the cellular and tissue scales, in perhaps the first application of uncer-
tainty quantification to multi-scale cardiac modelling. In Fig. 1 we pres-
ent a summary of this study, as it provides an excellent introduction to
the concept of uncertainty quantification applied to this field.

We have also included a short extension to this work in Supplemen-
tary Material A, where we examine how the same technique can be ap-
plied to investigate both intra- and inter-animal variability in cellular
recordings.

1.2. Aim and scope

The pipeline shown in Fig. 1 concentrates on a single component of
INa channel behaviour, and examines how observation uncertainty can
be expressed as parameter uncertainty, and how UQ can be used to es-
tablish how these uncertainties influence the model output.

The aim of this paper is apply a statistical UQ approach to cardiac AP
models, and so gain mechanistic insight into the models as well as car-
diacmyocytes.We present two complementary case studies. In the first
case studywe showhow themaximal conductances of ion channels can
be inferred from noisy experimental recordings as distributions that ex-
press uncertainty about the estimates. The second case study then uses
a statistical model (an emulator, surrogate model or metamodel) of a
cardiac APmodel to examine how uncertainties inmaximal ion channel
conductances influence uncertainty in model outputs, such as APD.
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