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a  b  s  t  r  a  c  t

The  special  affine  Fourier  transform  (SAFT),  which  is a  time-shifted  and  frequency-modulated  version  of
the  linear  canonical  transform  (LCT),  has been  shown  to be a powerful  tool  for signal  processing  and  optics.
Many properties  for this  transform  are  already  known,  but an  extension  of  convolution  theorem  of  Fourier
transform  (FT)  is  still  not  having  a widely  accepted  closed  form  expression.  The  purpose  of  this  paper  is
to  introduce  a new  convolution  structure  for  the SAFT  that  preserves  the  convolution  theorem  for  the FT,
which  states  that  the  FT  of the convolution  of  two  functions  is  the product  of  their Fourier  transforms.
Moreover,  some  of  well-known  results  about  the  convolution  theorem  in  FT  domain,  fractional  Fourier
transform  (FRFT)  domain,  LCT  domain  are  shown  to be special  cases  of  our  achieved  results.  Last,  as  an
application,  utilizing  the  new  convolution  theorem,  we  investigate  the  multiplicative  filter  in  the  SAFT
domain.  The  new  convolution  structure  is  easy  to  implement  in  the  designing  of filters.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The special affine Fourier transform (SAFT) [1–4], also called the
offset linear canonical transform (OLCT) [4] or the inhomogeneous
canonical transform [3], is a six-parameter (a, b, c, d, u0, ω0) class
of linear integral transform. The SAFT encompasses a number of
important transform in digital signal processing and optical system
modeling. The well-known signal processing operations, such as
the Fourier transform (FT), the offset FT [3,4], the fractional Fourier
transform (FRFT) [5,6], the offset FRFT [3,4], the Fresnel transform
[7], the linear canonical transform (LCT) [8–10] and the scaling
operations are all special case of the SAFT. With the progression of
LCT theory, SAFT also has evolved as an interesting tool. The SAFT
is more general and flexible than the original LCT for its two extra
parameter u0 and ω0. Recently, along with applications of the LCT in
the signal processing community [5,9,11–15], the role of the SAFT
for signal processing has also been noticed. It has found many appli-
cations in optics, signal processing, and many other applications
[3,4,16–18].

With intensive research of the SAFT, many properties have been
found including time shift, phase shift, scaling, differentiation, inte-
gration and so on [3,16]. Simultaneously, as the generalization of FT,
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the relevant theory of SAFT has been developed including the con-
volution theorem, uncertainty principle, sampling theory and so
on [16–18], which are generalizations of the corresponding prop-
erties of the FT, FRFT and LCT [3,9,19–28]. Conventional convolution
operations for FT are fundamental in the theory of linear time-
invariant (LTI) system [9]. The output of any continuous-time LTI
system is found via the convolution of the input signal with the sys-
tem impulse response. As the SAFT has found wide applications in
optic and signal processing fields, it is theoretically interesting and
practically useful to consider the convolution theory in the SAFT
domain. However, the convolution theorems don’t have the ele-
gance and simplicity comparable to that of the FT, which states
that the FT of the convolution of two  functions is the product of
their Fourier transforms.

Convolution theorem for a linear integral transform can be for-
mulated in several ways. Recently, Xiang and Qin [16] introduced
a new convolution operation that is more suitable for the SAFT and
by which the SAFT of the convolution of the two  functions is the
product of their SAFTs and a phase factor. However, on the one
hand the convolution theorem for the SAFT derived in [16] with
the modified convolution operation also contains an extra chirp
factor and hence does not exactly parallel the theorem given by
FT. On the other hand, there possesses different chirp multiplica-
tions, which are difficult to implement in the engineering based
on it is nearly impossible to generate a chirp signal accurately. In
this paper, we  propose a new convolution structure for the SAFT,
which is different from the convolution structure derived in [16].

http://dx.doi.org/10.1016/j.ijleo.2015.11.211
0030-4026/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.ijleo.2015.11.211
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.11.211&domain=pdf
mailto:zhixiyang@hit.edu.cn
mailto:dywei@unhbox voidb@x {special {ps:23 TD$DIFF}}xidian.edu.cn
mailto:wzhang6262@hit.edu.cn
dx.doi.org/10.1016/j.ijleo.2015.11.211


2614 X. Zhi et al. / Optik 127 (2016) 2613–2616

Table 1
Some of the specific cases of the saft.

Parameter A Corresponding transform

A = (a, b, c, d, 0, 0) Linear canonical transform
(LCT)

A  = (cos �, sin �, − sin �, cos �, u0, ω0) Offset fractional Fourier
transform (OFRFT)

A  = (cos �, sin �, − sin �, cos �, 0, 0) Fractional Fourier transform
(FRFT)

A = (0, 1, − 1, 0, u0, ω0) Offset Fourier transform (OFT)
A  = (0, 1, − 1, 0, 0, 0) Fourier transform (FT)
A  = (1, b, 0, 1, 0, 0) Fresnel transform
A  = (1, 0, 0, 1, u0, 0) Time shift
A  = (1, 0, 0, 1, 0, ω0) Frequency shift
A  = (d−1, 0, 0, d, 0, 0) Time scaling

Based on the expression for the generalized translation in the SAFT
domain, the generalized convolution theorem can be derived in
the SAFT domain, which shows that the generalized convolution of
two signals in time domain is equivalent to simple multiplication
of their SAFTs in the SAFT domains. This result is an extension of
the convolution theorem from the FT to the SAFT domain, and can
be more useful in practical analog filtering in the SAFT domain. We
also show that the convolution theorem in FT or FRFT domain can
be looked as special cases of our achieved results.

The rest of the paper is organized as follows. In Section 2,
we provide a brief review of the SAFT and convolution theory. A
new convolution theorem for SAFT is derived based on general-
ized translation in Section 3. In Section 4, the multiplicative filter is
investigated in the SAFT domain. The paper is concluded in Section
5.

2. Preliminaries

2.1. Special affine Fourier transform (SAFT)

The SAFT was introduced by Abe and Sheridan [1,2] who  studied
a transformation in phase space that was associated with a general,
inhomogeneous, lossless linear mapping. The SAFT of a signal f (t)
with real parameter A = (a, b, c, d, u0, ω0) is defined as [1–4]

FA (u) = SA [f (t)]  (u) =

⎧⎨
⎩

∫ +∞

−∞
f (t) hA (u, t) dt, b /= 0

√
dej(cd/2)(u−u0)2+jω0uf [d (u − u0)] , b = 0

(1)

where

hA(u, t) =
√

1
j2�b

e
j(1/2b)

[
d(u2

0
+u2)−2u(du0−bω0)+2t(u0−u)+at2

]
(2)

a, b, c, d, u0, ω0 are real numbers satisfying ad − bc = 1. We only
consider the case of b /= 0, since the SAFT is just a chirp multipli-
cation operation if b = 0. And without loss of generality, we assume
b > 0 in the following sections. The inverse of the SAFT is given by
parameters A−1 = (d, − b, − c, a, bω0− du0, cu0− aω0) as follows:

f (t) = SA−1
[FA (u)] (t) = C

+∞∫
−∞

FA (u) hA−1 (u, t) du (3)

where C = e
j(1/2)

(
cdu2

0
−2adu0ω0+abω2

0

)
. This can be verified by using

the Definition (1). The SAFT can model a number of optical opera-
tions such as rotation and magnification (see Table 1).

The SAFT has the following important space shift and phase shift
properties [4,16], which are used to derive the new convolution
theorems for SAFT in this paper.

Property 1. The space shift property

SA [f (t  − �)] (u) = FA (u − a�) e−j(ac�2/2)+jc�(u−u0)+ja�ω0 (4)

Property 2. The phase shift property

SA
[
f (t) ej�t

]
(u) = FA (u − b�) e−j(bd�2/2)+jd�(u−u0)+jb�ω0 (5)

Property 3. The space shift and phase shift properties

SA
[
f (t  − �) ej�t

]
(u)

= FA (u − a� − b�) e−j(ac�2+bd�2/2)+j(c�+d�)(u−u0)−jbc��+j(a�+b�)ω0

(6)

2.2. The convolution theory

Convolution and correlation operations are fundamental in the
theory of LTI system. Moreover, convolution and correlation are
widely used in signal processing, as well as in optics, in pattern
recognition or in the description of image formation with inco-
herent illumination [16,24–30]. The convolution operation in FT
domain is defined as

f (t)⊗  g (t) =
+∞∫
−∞

f (�) g (t  − �) d� (7)

f (t)⊗  g (t)
FT←−F (u) G (u) (8)

where ‘⊗’ denotes the conventional convolution operation.
Recently, the convolution theorem has been derived in the SAFT

domain by Xiang [16] as follows:

z (t) =
√

1
j2�b

ej(d/2b)u2
0

+∞∫
−∞

f (�) g (t  − �) e−j(a�/b)(t−�)dt (9)

SA [z (t)]  (u) = FA (u) GA (u) e(j/2b)[−du2+2u(du0−bω0)] (10)

The SAFT of the convolution of the two functions is the product of
their SAFTs and a phase factor. However, the convolution theorem
doesn’t have the elegance and simplicity comparable to that of the
FT.

3. New convolution structure for the SAFT based on
generalized translation

In this section, we seek to modify the ordinary convolution
structure using the generalized translation based on the kernel of
the SAFT. We  will derive the new convolution theorem for the SAFT
based on the generalized translation. The new convolution theorem
has the elegance and simplicity comparable to the classical result
for the FT. Some of the well-known results about the convolution
theorem in FT domain, FRFT domain, LCT domain are shown to be
special cases of our achieved results.

3.1. Generalized translation and general framework of
convolution theory

Generalized translation is necessary in dealing with the signal
transforms with non-exponential kernels to have the translation
or shift property of comparable simplicity to that of the Laplace or
Fourier transforms [31].

If we  consider a general signal transform and its Fourier-type
inverse given by

f (t) =
∫

� (ω) F (ω) h (ω, t) dω (11)
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