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a  b  s  t  r  a  c  t

By  means  of  the idea  of sine–cosine  method  and  He’s  semi-inverse  method,  some  analytic  solutions  for  the
Biswas–Milovic  equation  are  presented.  The  sine–cosine  method  and  He’s  semi-inverse  method  are  used
to construct  exact  solitary  solutions  of this  equation.  Biswas–Milovic  equation  is  a generalized  version
of  the  familiar  nonlinear  Schrodinger’s  equation  describing  the  propagation  of  solitons  through  optical
fibers  for  trans-continental  and  transoceanic  distances.  New  families  of  exact  travelling  wave  solutions
of  the  Biswas–Milovic  equation  are  successfully  obtained.
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1. Introduction

The theory of optical solitons has been one of the widely pop-
ular topics of research for the last few decades [1–6]. In order
to model the dynamics of optical soliton propagation for trans-
oceanic and trans-continental distances, an improved model is the
Biswas–Milovic equation (BME) that was first introduced in 2010
[1]. This model accounts for the departure from perfection for the
dynamics of soliton propagation through optical fibers. There are
several detrimental effects that are inevitable. These include the
errors due to the imperfections of the cylindrical geometry of the
fibers, randomness of the injection of the pulses at the initial end of
the fiber and others. Therefore the group velocity dispersion, evolu-
tion of the pulses will not be quite governed by the NLSE. Instead a
generalized version of the NLSE, namely the Biswas–Milovic equa-
tion is a model that is closer to reality [2]. The Biswas–Milovic
equation that is going to be studied in this paper is given by [3]

i(qm)t + a(qm)xx + bF(|q|2)qm = 0. (1)

where i = √−1 and the dependent variable q is a complex val-
ued function, while x and t are the two independent variables. The
coefficients a and b are constants where ab > 0. The parameter m1.

Eq. (1) is a nonlinear partial differential equation that is not
integrable, in general. The non-integrability is not necessarily
related to the nonlinear term in it. Also, in (1), F is a real-valued
algebraic function and it is necessary to have smoothness of the
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complex function F(|q|2) : C �→ C. Considering the complex plane C
as a two-dimensional linear space R2, the function F(|q|2) is k times
continuously differentiable, so [4]

F(|q|2) ∈
⋃∞

m,n=1
Ck((−n, n) × (−m, m); R2). (2)

In this paper we will study the case m = 1 of Biswas–Milovic
equation

iqt + aqxx + bF(|q|2)q = 0. (3)

In order to seek exact solutions of Eq. (3), we  assume that q(x,
0) = ei x and in this case the Kerr law of nonlinearity appears in
nonlinear optics [5] is

F(s) = s. (4)

so Eq. (3) becomes

i qt + a qxx + b |q|2 q = 0. (5)

Now, in order to seek exact solutions of Eq. (5), we assume

q(x, t) = u(�) ei �, � = ˛x + ˇt, � = x − 2a˛t, (6)

where ˛,  ̌ are constants to be determined later. Substituting Eq.
(6) into Eq. (3), we  have

−(  ̌ + a˛2)u(�) + au′′(�) + bu3(�) = 0, (7)

The paper is prepared as follows: In Sections 2 and 3, the He’s
semi-inverse method and sine–cosine method are discussed; In
Section 4 and 5, we  exert these methods to the Biswas–Milovic
equation. Finally, the paper is concluded in Section 6.

http://dx.doi.org/10.1016/j.ijleo.2015.12.051
0030-4026/Published by Elsevier GmbH.

dx.doi.org/10.1016/j.ijleo.2015.12.051
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.12.051&domain=pdf
mailto:mnajafi82@gmail.com
dx.doi.org/10.1016/j.ijleo.2015.12.051


2680 M.  Najafi, S. Arbabi / Optik 127 (2016) 2679–2682

2. Description of He’s semi-inverse method

We  suppose that the given nonlinear partial differential equa-
tion for to be in the form

P(u, ux, ut, uxx, utt, uxt, . . .)  = 0, (8)

where P is a polynomial in its arguments. The essence of He’s semi-
inverse method can be presented in the following steps:

Step 1. Seek solitary wave solutions of (8) by taking u(x, t) = U(�),
� = x − ct and transform (8) to the ordinary differential equation

U(u, u′, u′′, . . .)  = 0, (9)

where prime denotes the derivative with respect to �.
Step 2. If possible, integrate (9) term by term one or more times.

This yields constant(s) of integration. For simplicity, the integration
constant(s) can be set to zero.

Step 3. According to He’s semi-inverse method, we construct the
following trial-functional

J(U) =
∫

L d�, (10)

where L is an unknown function of U and its derivatives.
There exist alternative approaches to the construction of the

trial-functionals, see Refs. [6,7].
Step 4. By the Ritz method, we can obtain different forms of

solitary wave solutions, in the form

U(�) = p sechn(q�), (11)

where P and q are constants to be further determined.
Substituting (11) into (10) and making J stationary with respect

to P and q results in

∂J

∂p
= 0, (12)

∂J

∂q
= 0. (13)

Solving simultaneously (12) and (13) we obtain and. Hence, the
solitary wave solution (11) is well determined.

3. Description of sine–cosine method

1. We  introduce the wave variable � = x − ct into the PDE

P(u, ut, ux, utt, uxx, utx, . . .)  = 0, (14)

where u(x, t) is traveling wave solution. This enables us to use the
following changes:

∂
∂t

= −c
∂
∂�

,
∂2

∂t2
= c2 ∂2

∂�2
,

∂
∂x

= ∂
∂�

,
∂2

∂x2
= ∂2

∂�2
, · · ·.  (15)

One can immediately reduce the nonlinear PDE (14) into a nonlin-
ear ODE

Q (u, u�, u��, u���, . . .)  = 0. (16)

The ordinary differential equation (16) is then integrated as long
as all terms contain derivatives, where we neglect integration
constants.

2. The solutions of many nonlinear equations can be expressed
in the form [8]

u(x, t) =

⎧⎨
⎩

� sinm(� �),
∣∣�∣∣ ≤ �

�
,

0 otherwise,

(17)

or in the form

u(x, t) =

⎧⎨
⎩

� cosm(� �),
∣∣�∣∣ ≤ �

2�
,

0 otherwise,

(18)

where �, � and m /= 0 are parameters that will be determined, �
and c are the wave number and the wave speed respectively. We
use

u(�) = �sinm(��),

un(�) = �nsinnm(��),

(un)� = n� m �n cos(��)sinnm−1(��),

(un)�� = −n2�2 m2�nsinnm(��) + n�2�nm(nm − 1)sinnm−2(��),

(19)

and the derivatives of (18) becomes

u(�) = � cosm(� �),

un(�) = �n cosn m(� �),

(un)� = −n� m �n sin(��)cosn m−1(��),

(un)�� = −n2�2 m2�ncosn m(��)+n�2�n m(n m−1)cosn m−2(��),

(20)

and so on for other derivatives.
3. We substitute (19) or (20) into the reduced equation obtained

above in (16), balance the terms of the cosine functions when (20)
is used, or balance the terms of the sine functions when (19) is
used, and solving the resulting system of algebraic equations by
using the computerized symbolic calculations. We  next collect all
terms whit same power in cos k(��) or sin k(��) and set to zero
their coefficients to get a system of algebraic equations among
the unknowns �, m and �. We obtained all possible value of the
parameters �, m and � [9].

4. Application of He’s semi-inverse method

According to Ref. [6], by He’s semi-inverse method [7], we  can
arrive at the following variational formulation:

J(v) =
∫ ∞

0

[
− a

2
(u′)2 − (  ̌ + a˛2)

2
u2 + b

4
u4

]
d�. (21)

We assume the solitary solution in the following form:

u(�) = p sech(q�) (22)

where p, q are unknown constants to be further determined.
By substituting (22) into (21) we obtain

J =
∫ ∞

0

[(
1
2

p2aq2 + 1
4

bp4
)

sech4(q�)
]

d�

+
∫ ∞

0

[(
−1

2
p2aq2 − 1

2
p2

 ̌ − 1
2

p2˛2a
)

sech2(q�)
]

d�

= 1
q

(
1
2

p2aq2 + 1
4

bp4
)∫ ∞

0

sech4(�) d�

+1
q

(
−1

2
p2aq2 − 1

2
p2

 ̌ − 1
2

p2˛2a
)∫ ∞

0

sech2(�) d�

= 2
3 q

(
1
2

p2aq2 + 1
4

bp4
)

+ 1
q

(
−1

2
p2aq2 − 1

2
p2

 ̌ − 1
2

p2˛2a
)

.
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