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a  b  s  t  r  a  c  t

Based  on  Green’s  function  method,  we  have  conducted  a  systematic  numerical  investigation  on the  char-
acteristics of  local  density  of  optical  states  of  a  tapered  grated  waveguide  and  other  related  parameters
such  as  field profiles,  transmission  and scattering  loss at left  and  right  resonant  states.  The  tapered  grated
sections  are  additional  corrugated  sections  at both  edges  of a regular  grated  waveguide.  We  consider
two  different  variations  of the  corresponding  sections  namely  the  uniform  and  non-uniform  corrugation
depth  configurations.  It  is  found  that  the  characteristics  of  the  local  density  of  optical  states  for  both  vari-
ations  at  resonant  states  are  different,  especially  for  the  left resonant  state.  In  the  mean  time,  compared
to  the  other  cases,  a  relatively  distinct  characteristic  is  also found  on  the transmission  and  scattering  loss
parameters  of uniform  variations  at right  resonant  case.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In integrated optical devices for sensor applications, a specific
structure i.e. a grated waveguide (GWg) in the form of an asym-
metric corrugated slab waveguide has been intensively used by
utilizing the existence of photonic band gap (PBG) in its transmis-
sion characteristics, where light in certain range of wavelength
cannot be propagated [1]. For the corresponding applications,
wavelength variations of the resonant states of PBG edges are
usually considered as a platform for sensing the refractive index
changes of surrounding environment [2].

In its implementation, the associated resonant states does not
always allow good sensitivity of the device due to photon scattering
that lead to the loss of energy. This loss of energy is responsible for
the decreasing of optical sensor device sensitivity in general [3].
Recently, it was reported that the modification of GWg  structure
namely by introducing tapered grated sections with varying corru-
gation depths at the edges of the corresponding GWg  could led to
the loss reduction and transmission enhancement [4]. It was shown
that for a specific GWg  structure, the modification could reduced
loss up to 85% and increased transmission up to 15%. However,
this modification could also led to the reduction of group velocity,
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which in turn, led to the reduction of sensitivity itself. Neverthe-
less, the effect of this group velocity reduction on the decrease of
device sensitivity is relatively insignificant compare to the effect of
the resulted loss reduction on sensitivity enhancement.

In the mean time, it is well known that one of the important
properties of an optical structure is its availability to accomodate
photon eigenmodes at specific location inside an optical structure
[5]. This property is represented by the so called local density of
optical states or LDOS. There are several ways to calculate LDOS
e.g. [6–12], one of them is by means of Green’s function method
in the form of Dyson’s formulation [11]. In this method the corre-
sponding LDOS can be calculated directly without calculating the
electromagnetic field first as needed in the method given in, for
instance, Ref. [6].

Following Ref. [4], in this report we discuss the characteristics
of LDOS of the associated GWg  structure with respect to the struc-
tural variations of tapered grated sections. Similar to that reference,
we also employ the same Green’s function method to calculate
the related LDOS. To the best of our knowledge, the discussion
regarding the characteristics of LDOS in the corresponding struc-
ture has never been reported elsewhere.

We organize the discussion as follows: in Section 2 we discuss
the corresponding waveguide structure, while formulation of the
Green’s function method and definition of the LDOS are given in
Section 3. The results of our investigation regarding the charac-
teristics of LDOS for different variations of tapered grated sections
are discussed in Section 4. We  end this report with a summary in
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Fig. 1. Illustration of grated waveguide with additional tapered grated sections. The
illuminated TE-Mode is linearly polarized in z-direction.

Section 5. It should be pointed out that in this report we  present
many figures to give more visual explanations on our results.

2. Tapered grated waveguide structure

We  consider a three layer GWg  system consisting of a semi-
infinite air cladding with a slab nclad = 1, dielectric waveguide of
d = 160 nm thickness, incorporated with a finite length corrugated
section in the upper side and nslab = 1.98, and a semi-infinite sub-
strate of nsub = 1.44. At both edges of the main GWg  section, we
insert additional grated sections with tapered corrugation depths
as shown in Fig. 1, which is the same to a structure that was  dis-
cussed in Ref. [4]. The number of teeth in the main grating section
is denoted by N with depth c, such that there are N + 2 corrugations.
The period is set to � = 200 nm.  In each additional grated section,
the number of corrugations is set to four with each depth is denoted
by c1, c2, c3 and c4.

We  assume that the slab waveguide is illuminated by an elec-
tromagnetic field in TE fundamental mode from the left side. In
general, due to the finite corrugated section length it is obvious that
the field is also experiencing scattering phenomenon that leads to
the loss of energy, which can cause disadvantage to the sensing
performance.

3. Green’s function method and definition of LDOS

In principle, to solve numerically the Maxwell equation of TE
mode propagation, one can use several methods such as finite
difference method, finite element method [1] and Green’s func-
tion method [11,12]. Among those methods, the Green’s function
method has, at least, three advantages compared to other meth-
ods. In contrast to the finite difference and finite element method,
for example, this method does not need any boundary conditions
such that it can be implemented in a relatively small computational
window [4]. Other advantages are its ability to calculate the LDOS
quantity directly based on Dyson’s formulation and its easiness to
handle small perturbation on the considered structure. Based on
these advantages, we choose to use this method for calculating the
corresponding LDOS of the tapered GWg. However, it should be
noted that the disadvantage of this method is its requirement on
large memory and time consumption.

Taking advantage that the Green’s function is a scalar function
G (r, r′) for TE mode, such that in order to find the related function
in the Dyson’s formulation for a specific optical structure one only
has to solve the following integral equation [10]:

G
(

r, r′) = GB
(

r, r′) +
∫

˝

GB
(

r, r′′) k2
0�ε

(
r′′)G

(
r′′, r′)d˝′′ (1)

here GB (r, r′) is the Green’s function of the background structure
and in our case is the aforementioned three layer systems. The
symbols r = (x, y), r′ = (x′, y′) and k0 denote the observation point,
electric dipole position, and vacuum wavenumber, respectively,
while �ε  represents the permittivity contrast between the back-
ground structure and the considered GWg  structure. The area of
computational window is denoted by ˝.

Table 1
Variation of additional tapered grated sections with uniform corrugation depth.
The symbols R12 and R20 represent the regular structure with N = 12 and N = 20,
respectively.

Variations c1 (nm) c2 (nm) c3 (nm) c4 (nm)

R12 0 0 0 0
U1  20 20 20 20
U2  40 40 40 40
U3  60 60 60 60
U4  80 80 80 80
R20 100 100 100 100

To solve Eq. (1) numerically, we can use the following discreti-
zation scheme [11,12]:

Gij = GB
ij +
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where P is the number of mesh grids, εB is the background permit-
tivity. The parameters M and L are introduced to handle singularity
in Eq. (1) [11]. The discrete Eq. (2) can be solved iteratively using
an algorithm introduced in Ref. [10], namely by adding the pertur-
bation one-by-one into the background structure until the desired
GWg  structure formed.

From the calculated Green’s function, one can easily construct
the field profile simply by solving the following discrete equation
[12]:
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where EB is the fundamental TE mode of the background i.e. the
three layer systems. In the mean time, also from Eq. (2), one can
calculate the LDOS by using the following dimensionless definition
[10]:

� (r) = Im [G (r, r)]

Im
[
GB (r, r)

] (4)

here � is a normalized LDOS at specific position r which can be used
to describe the density of electric field eigenmodes in the range
between � and � + d�, where � is the related wavelength [5,8].

As previously pointed out, the calculation of Eq. (2) requires
a relatively large computer memory allocation. Nevertheless, this
problem can be overcome by choosing as small as possible com-
putational window. Here, to conduct the numerical calculation
for LDOS and field profile based on Eqs. (2) and (3), respectively,
the related computational window is defined as follows: (xl, xr) =
(0, 8) �m and (yb, yt) = (−0.04, 0.2) �m, where xl(r) denotes the
left (right) boundary in x-direction, while yb(t) denotes the bottom
(top) boundary in y-direction. The mesh size is set to (�x,  �y) =
(0.02, 0.01) �m.

4. Characteristics of LDOS at resonant states

To characterize the LDOS at left and right resonant states with
shorter and longer wavelengths, on the related photonic band gap,
respectively, we consider for the additional tapered grated sections,
as shown in Fig. 1, several variations. The corresponding variations
are classified into two  categories namely uniform and non-uniform
corrugation depths as given in Tables 1 and 2, respectively. It is
important to note that those variations are varied between two
regular GWg  with N = 12 and N = 20. Here, we set c = 100 nm.
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