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a  b  s  t  r  a  c  t

Error  spectrum  is a comprehensive  metric  for  evaluation  of  estimation  performance  in  that  it is  an  aggre-
gation  of  many  incomprehensive  measures.  However,  error  spectrum  requires  computing  the  expectation
of  the  rth  power  of the  estimation-error-norm  as  using  it to evaluate  an estimator’s  performance.  There-
fore unless  the  error  distribution  is  given,  it’s  usually  not  easy  to obtain  the  error  spectrum.  To  alleviate
this  difficulty,  two  approximation  algorithms  are  proposed.  One  is the  Gaussian  mixture  method,  which
calculated  the  error  spectrum  by capturing  the  probability  density  function.  The  other  using  the sample
is  the  power  means  error  method.  Furthermore,  how  the Gaussian  mixture  method  and  power  means
error  method  can  be used  in estimation  performance  evaluation  are analyzed  not  only  in  the  large  sample
case but  also  in  the  small  sample  case.  Numerical  examples  are  provided  to  illustrate  the  effectiveness  of
the  above  two algorithms.  It is  shown  that  the  two proposed  algorithms  can be  applied  easily  to  calculate
the  error  spectrum  in estimator  performance  evaluation.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In recent years, estimation performance evaluation (EPE) has
received a great amount of attention due to their increasing use in
estimation/filtering (see e.g., [1–5]), fusion and target tracking (see
e.g., [6–8]). As pointed out in [9], a key aspect in EPE is the selec-
tion and proper interpretation of the metrics used for measuring
the performance and determining the characteristics of the algo-
rithms. So many new metrics have been provided in X.R. Li’s work
(see e.g., [1,9–12]), such as root mean square error (RMSE), average
Euclidean error (AEE), harmonic average error (HAE), Geometric
average error (GAE), iterative mid-range error (IMRE), median error
and error mode.

Unfortunately, all of the above metrics can only reflect one
aspect of the estimation performance. Thus, three comprehen-
sive performance measures, i.e., error spectrum (ES), desirability
level, and relative concentration and deviation measures were pro-
posed in Refs. [13–15]. Among these metrics, ES can reveal more
information about the estimation because it is an aggregation of
many incomprehensive metrics. In addition, ES has a large array of
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important properties for performance evaluation, which can be
found in Refs. [14,17].

However, ES has some limitations and drawbacks. On one hand,
for dynamic systems, it is not easy to tell which is better since ES is
a three-dimension plot for the whole time horizon. For this reason,
dynamic error spectrum (DES) was proposed to solve this prob-
lem in Refs. [18,19]. However, DES is in essence the average height
of error spectrum, which combines the error spectrum at a time
instant into a single point. Thus this many to one mapping suf-
fers from information loss. To overcome this, a new metric called
enhanced error spectrum is proposed [20]. On the other hand, ES
is difficult to calculate since it is defined by the error distribution
which is unfortunately almost never available. To alleviate this
difficulty, the Mellin transform provided a means to compute ES
analytically [21]. Although ES is easy to obtain by using the Mellin
transform, it is still required to know the error distribution. Nev-
ertheless, in practical applications, it is actually hard to represent
the error distribution but to obtain the sampling of the error. Thus,
how to calculate ES using the sample is a worthwhile problem.

In this paper, the Gaussian mixture method and power means
error method are proposed to calculate error spectrum approxi-
mately in EPE. Then how the Gaussian mixture method and power
means error method can be used to evaluate an estimator’s per-
formance are discussed. As shown in Fig. 1, in large sample case,
the Gaussian mixture method is in fact approximate to the ground
error distribution by using the samples. While the power means
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Fig. 1. Computation methods of error spectrum.

error method is straightforward to calculate ES based on the samp-
ling. Whereas, in small sample case, the ground error distribution
is approximately replace by the Gaussian mixture, which is used to
resampling. And then the power means error method is applied to
calculate the error spectrum based on the resampling samples.

This paper is organized as follows. ES is summarized in Section 2.
Then the Gaussian mixture method and power means error method
are proposed in Section 3. In Section 4, numerical examples are pro-
vided to illustrate the superiority of the above two approximation
algorithms. Section 5 concludes this paper.

2. Summary of error spectrum

According to [13,14], given (vector-valued) estimator error �̃ of a
(point) estimator �̂, i.e., �̃ = � − �̂ where � is the estimand (quantity
to be estimated). Denote e = ||�̃|| or e = ||�̃||/||�|| as the absolute
or relative estimation error norm, where || · || can be 1-norm or 2-
norm. Then, for r ∈ [− ∞ , + ∞],  ES is defined as

S(r) = [E(er)]1/r =
[∫

erdF(e)

]1/r

=

⎧⎪⎨
⎪⎩
[∫

erf (e)de

]1/r

if e is continuous[∑
piei

r
]1/r

if e is discrete

(1)

where F(e), f(e) and pi are the cumulative distribution function
(CDF), probability density function (PDF) and probability mass
function (PMF), respectively.

From Eq. (1), it is clear that ES include many incomprehensive
metrics as special cases by setting r to some specific values:

(a) S (2) =
(

E
[
e2
])1/2

. Thus for a discrete ei, S(2) = RMSE.
(b) S(1) = E[e]. Thus for a discrete ei, S(1) = AEE.
(c) S(0) � lim

r→0
S(r) = exp (E [ln e]). Thus for a discrete ei, S(0) � GAE.

(d) S(−1) =
(

1/E
[
1/e
])

. Thus for a discrete ei, S(− 1) = HAE.

In view of this, the notation r used in this paper is the real
number satisfying r ∈ [−1, 2].

In application, f(e) may  not be available, that is, the error distri-
bution is hard to represent, which lead to the difficulty computation
of the error spectrum. Certainly, if the PDF of e is given, a nice

method called Mellin transform have been proposed to calculate
ES [21]:

M [f (e) ; r] =
∞∫
0

er−1f (e)de (2)

By Eqs. (1) and (2), we  have

S (r) =
{

M [f (e) ; r + 1]
}1/r

(3)

Obviously, ES of many popular distributions can be obtained
based on the transform pairs and properties of the Mellin transform
[21]. Here is an illustrative example. Assuming that e = {ei}n

i=1 are
follows the Rayleigh distribution, that is

f (e) = e

k2
exp

(
−e2

2k2

)
(4)

where k > 0 is the degree of freedom and exp(·) is the Exponential
function.

Substituting Eq. (4) into Eq. (3) yields

S(r) =
{

M [f (e); r + 1]
}1/r =

⎧⎨
⎩

∞∫
0

er e

k2
exp

(
−e2

2k2

)
de

⎫⎬
⎭

1/r

(5)

Let u = e2/2k2, then e = k
√

2u, thus Eq. (5) can be rewritten as

S(r) =
{∫ ∞

0

er+1

k2
exp

(
−e2

2k2

)
de

}1/r

u=e2/2k2
=

{∫ ∞

0

(k
√

2u)
r+1

k2

k√
2u

exp(−u)du

}1/r

=
{

(k
√

2)
r
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0

u((r/2)+1)−1 exp(−u)du

}1/r

=
√

2k
{

�
(

r

2
+ 1
)}1/r

(6)

where

�
(

r

2
+ 1
)

=
∞∫
0

u((r/2)+1)−1 exp(−u)du,
r

2
+ 1 > 0

which is the Gamma  function.
To supplement, if the PDF of e is given whereas the parameters

are unknown, f(e) can be estimated according to a sample of e. In
fact, the error distribution is usually difficult to represent but to
obtain the sampling. Thus, two  new approximation algorithms are
proposed next to calculate ES based on the samples.

3. Two  approximation algorithms of error spectrum

Now, the Gaussian mixture method and power means error
method are proposed to compute the error spectrum. The Gaussian
mixture method is in fact approximate to the PDF of e by using the
samples

{
ei

}n

i=1
, which can effectively capture any PDF as closely as

desired. In this way, in Eq. (1), the PDF of e is replace by the Gaussian
mixture PDF. Certainly this approximation leads to the difficulty
computation for ES. Thus, the random simulation is applied to cal-
culate the integral of ES. Another approximation algorithm is the
power means error method, which is straightforward to calculate
ES based on the sampling.
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