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This paper  investigates  the sufficient  criterion  for robust  projective  synchronization  of  a fractional-order
chaotic  system.  On  the  basis  of  the  input-to-state  stable  (ISS)  theory,  a single  sinusoidal  state  coupling
controller  is derived  to  achieve  projective  synchronization  of  this  fractional  dynamical  system  by con-
sidering  bounded  interference.  The  control  parameters  are  obtained  by  resolving  the  matrix  inequality
into  some  algebraic  inequalities.  Numerical  simulations  are  presented  to verify  the  effectiveness  of  the
introduced  synchronization  scheme.
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1. Introduction

Fractional calculus is a classical notion in the field of applied mathematics, which can be regarded as a generalization dealing with the
differentiation and integration of arbitrary non-integer order [1,2]. In comparison with classical integer-order model, the distinguished
feature of fractional-order system is that it has infinite memory, which can be utilized to characterize different nonlinear phenomena more
accurately [3,4]. In addition, due to the fact that fractional system holds more adjustable variables, it can enlarge the key space and thus
be applied in encryption more safely [5–7]. Therefore, the dynamical analysis and synchronization of fractional order chaotic system is an
important topic of study in both research and application.

The dynamical feature of projective synchronization is the state trajectories of the master system verge on those of slave system up to a
constant proportional factor. This property can be used to extend binary digital communication to N-nary one with shorter response time.
Projective synchronization of integer-order chaotic system has been investigated thoroughly [8–12], including chaotic communication [8]
and designing of Hopf limit circle [12]. However, the study on projective synchronization of fractional-order dynamical system is less in
number. Its unpopularity may  be due to most of the stability theories and methods on synchronization for the integer-order chaotic system
cannot be extended to the fractional-order simply [5,13]. Although there are some works on projective synchronization of fractional system
[14–17], it should be observed that these control schemes are complicated and of expensive control cost, and that they have not considered
the practical circumstances with external noise disturbances. Therefore, we not only require master-slave systems to be synchronized, but
also to have the property of input-to-state stability.

Synchronization schemes of integer-order chaotic system via sinusoidal state feedback have been discussed numerically and analytically
[18,19]. The main advantage of a sinusoidal control scheme is that the control input is always smooth and bounded, and that the energy
consumption is low. Superiority though the sinusoidal synchronization scheme holds, it has not been investigated in fractional-order
dynamical system as far as we know.

In this work, we concentrate on the fractional version of a three-dimensional autonomous chaotic system with amplitude modulation
and constant Lyapunov spectrum [20]. By considering the fact that the amplitude parameters can provide the scale factors, a projective
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synchronization scheme of the fractional system with external stochastic noise is studied. First, based on the ISS theory of fractional system
[13], the projective synchronization criterion of two identical fractional chaotic systems coupled by single sinusoidal state error is derived
in the form of a matrix inequality, in which the control parameters can be evaluated by resolving the matrix inequality into some algebraic
inequalities. Then, to obtain the control parameters more expediently, the state error variable is restricted in a sub-region. Numerical
simulations are shown to further verify the feasibility of the presented synchronization scheme.

2. Model of fractional-order system

2.1. Preliminaries of fractional calculus

Some preliminaries such as definition, basic property and stability theory of fractional calculus are recalled in this section, which will
be used in the sequel.

There exist multiple definitions of fractional derivative, in our paper only the Caputo fractional-order derivative is adopted for its explicit
physical interpretation, as follows

Definition 1 ([21]). The Caputo fractional-order derivative of function f (t) with respect to t is defined by

Dqf (t) = 1
� (n − q)

t∫
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(t − �)−q+n−1
(

d
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)n
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where q is the order of fractional derivative, n is an integer satisfying n = [q] + 1, [q] is the integer part of q, � (·) is the Gamma  function.

Property 1. For Caputo fractional derivative operator, we have Dq(px1(t) + qx2(t)) = p1Dqx1(t) + p1Dqx2(t), where p1, p2 are real constants.

Lemma  1 ([22]). For the commensurate fractional-order system DqX = F(X) with X ∈ Rn, F(X) ∈ Rn and q ∈ (0, 1], the necessary condition
of generating chaos is q�/2 − min

{∣∣arg (�i)
∣∣} ≥ 0, where �i is the characteristic root of the Jacobian matrix J = ∂F(X)/∂X, i = 1, 2, . . .,  n.

Remark 1. In comparison with the numerical scheme of integer order differential equation, the calculation process of fractional differential
equation is more complex. In this paper, we employ the predictor-corrector algorithm for fractional differential system. What must be
clarified is that the Caputo definition is not an accurate expression of original fractional equation, and the approximation does not take
into account all the past of the signals.

2.2. Description of fractional-order chaotic system

In Ref. [20], the authors introduced a chaotic system. Careful analysis shows that, with the increasing of some parameters, the amplitude
of the state variables can be adjusted by certain functional relation, yet the Lyapunov exponent spectrums remain invariable. Amplitude
controllability of chaotic system is significative in applications. One can obtain the desired signal amplification without any extra circuitry
spending and prevent from increasing the probability of failure in circuit operation. Meanwhile, this feature can avoid the influence of the
band-limit filter in signal amplification circuit. Therefore, it is deemed to be a promising type system to provide a new security encoding
key in chaotic radar and chaotic communication [5,13].

The corresponding fractional version of this system is described as⎧⎪⎨
⎪⎩

Dqx1 = −ax1 + fx2

Dqx2 = bx2 + gx1x3

Dqx3 = −x3 − hx1
2

(1)

in which Dqx = dqx/dtq is the fractional derivative in Caputo sense.
When a = 10, b = 6, f = 1, g = 1, h = 1, fractional system (1) has three equilibrium points and their corresponding characteristic values are

P0(0,  0, 0) : �1 = −10, �2 = 6, �3 = −1

P+(7.746,  77.4597, −60) : �1 = −25.5231, �2 = 10.2615 + 19.0398i, �3 = 10.2615 − 19.0398i

P−(−7.746, −77.4597, −60) : �1 − 25.5231, �2 = 10.2615 + 19.0398i, �3 = 10.2615 − 19.0398i

It yields q >
(
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= 0.6853 from Lemma  1. Therefore, when q > 0.6853,
the necessary condition for the existence of chaos holds for system (1). The bifurcation diagram with respect to the varying fractional
order q is shown in Fig. 1(a), as we know that system (1) behaves chaos when 0.851 ≤ q ≤ 1. The corresponding phase portrait and power
spectrum are depicted in Fig. 1(b) and (c) with q = 0.9.

2.3. Amplitude modulation of fractional-order chaotic system

Theorem 1. For fractional system (1), the dynamic parameters f, g, h can, respectively modulate the amplitude of state variables x1, x2, x3

according to 1/
√

fgh, 1/
√

f 3gh, 1/(fg), and in the meantime the Lyapunov exponent spectrums remain invariable.
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