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We  investigate  the  reflection  of  laser pulse  from  a uniformly  moving  mirror  at relativistic  speeds  in
the  general  case  of  inclined  mirrors.  We  use  geometrical  optics  to derive  general  relations  for  length,
frequency,  wavelength  and  electric  field  of  the  pulse  after  reflection  from  inclined  mirror  in  the  lab
frame.  In addition,  the  pulse  geometric  deformation  from  reflection  is investigated  and  simulated  in  two
dimensions.
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1. Introduction

The discussion of the reflection of light from a uniformly moving
mirror is not new [1]. A particular case of the problem was  elabo-
rated by Einstein almost a century ago [2]. Einstein considered the
oblique incidence of a plane-polarized electromagnetic wave on a
perfectly reflecting mirror whose velocity was directed perpendic-
ularly to its surface. Einstein derived the equations for the angle of
reflection and the wave characteristics of the reflected light using
Lorentz transformations between the reference frame, where the
mirror was at rest, and the lab frame. This problem can be solved for
the general case in which the mirror is inclined and makes an angle
ϕ with velocity direction. Using Lorentz transformations and a basic
principle that the momentum change for reflecting light must be
perpendicular to the plane of the mirror [3], or a different approach
based on elementary principles of wave optics and the postulates
of special relativity [4], the relation between incident and reflected
angles can readily be determined for any mirror speed and any par-
ticular geometry. Our goal is to derive pulse duration after reflection
from an inclined moving mirror and an overall relation. Having
such a relation, we can find the maximum compression of the pulse
after reflection. Recent advances in ultra-short laser pulses technol-
ogy have led to an amazing increase in intensity [5]. Experimental
and theoretical studies and simulations have shown that under
the conditions typical for the interaction of such a high-intensity
laser pulses with under-dense plasma or over-dense plasma such as
thin layers, the nonlinear characteristics of this interaction results
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in the formation of electron density modulations in the form of
high-density bunches and thin layers moving with a relativistic
velocity that will act like relativistic mirrors [6,7]. Achieving the
order of femtosecond laser pulses (1 fs = 10−15 s) using conventional
mode-locking methods in the lasing medium with large frequency
bandwidth is known [8], but achieving the order of Attosecond and
Zepto-seconds is one of the present century dreams that notable
experimental successes herald the arrival of a new branch of sci-
ence [9]. Applying the relativistic mirror for more compression of
short pulses is one of the new methods in reaching to this branch.
A great deal of researchers’ activities in this branch has been allo-
cated to the methods of producing relativistic mirrors [10]. In this
paper we consider the pulse transverse and longitudinal compres-
sion in oblique reflection from an inclined relativistic mirror using
geometric methods and without the Lorentz transformations.

2. Length and area of the pulse after reflection

In reflection from stationary mirror, according to the ordinary
law of reflection of light, the angles of incidence and reflection are
equal [11]. When the mirror is moving, but its speed is less than the
relativistic limit or by adapting a moving frame in which the mirror
is at rest, the ordinary law of reflection is still valid. However, if
the mirror speeds up to the relativistic limit, in the stationary lab
frame, the ordinary law of reflection is no longer valid. In fact, it
is well established that for light reflected from a mirror moving at
relativistic speeds, the angle of reflection is not necessarily equal
to the angle of incidence [2,12]. Gjurchinovski [4] derived a general
relation for the angle of reflection  ̌ on the basis of the angle of
incidence  ̨ and the inclination angle ϕ of the moving mirror and
mirror velocity v in the lab frame (Fig. 3)
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Fig. 1. Reflection of light from the moving mirror in the lab frame (a) and in the
moving frame when the mirror is at rest in it (b).

cos  ̌ =
2 v

c sin ϕ +
(

1 + v2

c2 sin2 ϕ
)

cos ˛

1 + 2 v
c sin ϕ cos  ̨ + v2

c2 sin2 ϕ
. (1)

This relation in the non-relativistic limit v << c (c is the speed
of light) will be transformed to the familiar law of reflection,

cos  ̌ = cos ˛. (2)

Eq. (1) for ϕ = 0◦ simplifies to Eq. (2) which means that if the
velocity vector is parallel to the mirror surface (or when the mirror
is moving in its own direction) the angle of reflection is equal to
the angle of incidence and mirror movement has not any effect on
the angle of reflection (Fig. 1). This can also be proven by apply-
ing Lorentz transformations as follows. For this purpose, we  use
equations of relativistic aberration of light [13],
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where, � and �′ determine the orientation of the light ray with
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Applying Eq. (4) and Fig. 1, we get
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which simplifies to,
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In the moving frame we have
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which simplifies to,
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Fig. 2. Frame rotation for changing the inclined mirror to vertical mirror.

Applying Eqs. (6) and (7), we  get

sin  ̌ = sin ˛, (10)

which shows that, mirror movement has no effect on the angle of
reflection in this case.

The authors of reference [3] derived the following equations by
using Lorentz transformations,
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where, � = 1/
√

1 − v2/c2 and primed parameters are in the mov-
ing frame. By these equations the angle of reflection from moving
mirror can be obtained. In Ref. [3] the authors showed that in the
special case where the mirror moves perpendicular to its surface,
ϕ = ϕ′ = 90◦ we have
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Applying simple conversion v → v sin ϕ in Eq. (13) we get to Eq.
(1). These results show that, to consider the inclined mirror, we
can impose simple coordinate rotation to get a vertical mirror with
inclined velocity for simplification (Fig. 2). Therefore, an inclined
mirror with the velocity v has equivalent behavior such as the ver-
tical mirror with the velocity v sin ϕ, since mirror movement in own
direction with the velocity v cos ϕ does not have any effect on the
reflection angle.

We have prepared a geometric structure in Fig. 3 to get the pulse
length after reflection from the moving mirror in the direction of
propagation. All calculations are done in the laboratory frame and
we do not need Lorentz transformations. The pulse length before
reflection is Li. After pulse reflection at time t, when endpoint of the
pulse reaches the surface of the mirror at point B, the first point of
the pulse which at time t0 had hit the mirror, reaches point A. We
denote the straight line connecting points A and B by Lr and time
difference t − t0 by �t. Lr is the distance between the first and last
points of reflection. The actual length of the pulse after reflection is
the image of Lr in the direction of propagation which we denote by
Lr|| and is equal to BD the distance between points B and D. Since
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