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a  b  s  t  r  a  c  t

By  introducing  switching  law  associated  with  the  values  of the  state  variables,  a switched  mathematical
model  is established.  Poincaré  map  of the  whole  switched  system  is  defined  by  suitable  local  sections  and
local maps,  and  the  formal  expression  of  its  Jacobian  matrix  is obtained.  The  location  of the  fixed  point
corresponding  to the  limit  cycle  of  the switched  system  is  calculated  by  the  shooting  method.  To  inves-
tigate  switching  behavior  of  this  system,  the equilibrium  points  and their  bifurcations  of  the  subsystems
are  derived.  An interesting  switching  behavior,  i.e.,  the  so-called  4T-focus/focus/focus  periodic  switching
is explored  in detail  to  present  the mechanism  of the  movement.  With  the  increase  of  the  parameter,
the  turning  points  on the  switching  surface  may  be  attracted  by  different  attractors  of  the subsystem,
causing  the  turning  points  decrease  from  four  to  two.  Then  the  system  forms  other  types  of  periodic
solutions.  Furthermore,  period-decreasing  and  period-adding  sequences  have  been  obtained,  which  can
be  explained  by the  changes  of the  duration  time  in  the  subsystems.
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1. Introduction

Switched dynamical systems are one of the most interesting
class of piece-wise smooth systems that arise in scientific prob-
lems and engineering applications such as the electrical circuits [1],
chemical processing [2], communication networks [3]. Typically, a
switched dynamical system is composed of a family of subsystems
and rules that governs the switching of them. Generally, switching
rules are determined by the values of the state variables or related
to the fixed time for the occurrence of the alteration [4,5]. When
the switching rules are satisfied, the vector field may  alternate from
one dynamical subsystem to another, leading to the vector field is
not differentiable at turning point [6–8]. Because of the wide exist-
ence of switches, the behaviors of switched system have received
much interest during the last decades and a lot of results have been
reported [9–12]. In [9], some new exponents were defined by which
the essential patterns that guarantee the stability of fast switch-
ing systems could be figured out and the capacity and efficiency of
random switch for stabilizing a switched system were described. In
[10], new type of characteristic exponent was introduced to capture

∗ Tel.: +86 15052627056.
E-mail address: czhang@hytc.edu.cn

the stability feature of continues-time switched systems and two
criteria of asymptotic exponential stability for linear and nonlinear
case were obtained. In [11], the stabilization of switched nonlin-
ear systems with passive and non-passive subsystems was studied
via the average dwell time method. In [12], some sufficient con-
ditions were obtained to ensure global asymptotical stability and
global robust stability of the unique equilibrium of switched neural
networks.

Up to now, much attention has been paid to the stability, con-
trollability, reachability, observability and design of the switched
system [13–17]. However, little work has been done in the dynam-
ical evolution with the variation of the parameters, the difference
between the behaviors caused by two types of switches, respec-
tively, and the parameter bifurcations associated with the switches
as well as the mechanism of the complexity.

Here we consider a switched system alternating between two
subsystems described by Rössler system and Lorenz oscillation
with switches defined on the conditions related to the state vari-
ables. Some interesting phenomena such as periodic switching,
period-decreasing, period-adding sequences have been obtained.
Based on the equilibrium points analysis of the two  subsystems
as well as the critical behaviors at the switches, the mechanism
related to the periodic orbits observed are presented to account for
the evolutions of the trajectories.
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Fig. 1. (a) Trajectory partition and (b) the switching scheme.

2. The model of switched system

Let us consider a state switched system, which alternates
between Rössler system and Lorenz oscillator, written in the form

dX

dt
= f�(X), � ∈ {1, 2}, (2.1)

where X  = (x, y, z)T .f�, � ∈ {1, 2} are the vector fields
with f1(X) = (−y − x, x + �y, xz − �z + �)T and f2(X) =(

˛(y − x), x(ı − z) − y, xy − ˇz
)T

. � is a switching scheme. When
� = 1 means the subsystem 1, named SW1, be active, while � = 2
means the subsystem 2, named SW2, be active.

In order to investigate the typical dynamics of the switched
system, the switch scheme � related to three switching bound-
aries S1 = {X  ∈ R

3 | x = x1
ref

} and S2,3 = {X  ∈ R
3 | x = ±x2

ref
} are

introduced, shown in Fig. 1.
For the trajectory of the switched system starting from an initial

point X0, governed by SW1, i.e., � = 1. Once one of the state vari-
able x passes across the reference value x1

ref
twice at t = �1

0 , it may
then be governed by SW2, i.e., � change from 1 to 2. The trajectory
moving according to SW2  may  change back to the vector field f1(X)
when the trajectory passes across the reference value x2

ref
or −x2

ref

four times at t = �1
0 + �2

1 , until the state variable x passes across x1
ref

twice again and the motion then continues as above. Based on the
switching scheme described above, two sequences (Xi, i ∈ N) and
(�k

i
, i ∈ N, k ∈ {1, 2}) can be obtained,

X1
�2

1→X2
�1

1→X3
�2

2→X4
�1

2→X5
�2

3→X6
�1

3→X7
�2

4→· · ·

where the points (Xi, i ∈ N) are the turning points and (�1
i

, i ∈ N)
and (�2

i
, i ∈ N) are the duration time in the two subsystems, respec-

tively. Therefore, the trajectory of the whole switched system can
be divided into two parts, one is governed by SW1,expressed as

X(t) = �(t, X2i), t ∈
⋃∞

i=0

⎡
⎣ i∑

j=0

(�1
j + �2

j ),
i∑

j=0

(�1
j+1 + �2

j )

⎤
⎦ ,(2.2)

the other is determined by SW2, i.e.,

X(t) = �(t, X2i+1), t ∈
⋃∞

i=0

⎡
⎣ i∑

j=0

(�1
j+1 + �2

j ),
i∑

j=0

(�1
j+1 + �2

j+1)

⎤
⎦,

(2.3)

where �2
0 = 0. According to the switching scheme, it is easy to know

that the points (X2i−1, i = 1, 2, · · ·)  are on the switching surface S1,
while the points (X2i, i = 1, 2, · · ·)  are on the switching surface S2,3.

3. The location of limit cycles

In this section, we investigate the generation of the period oscil-
lation of the switched system (2.1). The multiple-shooting method
present in [18] will be adopted to locate limit cycle.

With the definition of the trajectory of the switched system
given by (2.2) and (2.3), the following two  local maps are defined

T1 : S2,3 −→ S1

X2i−1 �−→ X2i = �(�2
i

, X2i−1),

T2 : S1 −→ S2,3

X2i �−→ X2i+1 = �(�1
i

, X2i).

(3.1)

where i = 1, 2, . . ..  Assume that the switching surface S2,3 is the
poincaré section, the poincaré mapping T from S2,3 to S2,3 can be
expressed as

T(X2i−1) = T2 ◦ T1(X2i−1) = �(�1
i , �(�2

i , X2i−1)). (3.2)

Essentially, the periodic oscillation of the switched system (2.1)
is equivalent to the existence of the fixed point of the poincaré
mapping T, namely

X
∗ − T(X∗) = 0. (3.3)

Since the analytic expression of the poincaré map  T is unknown,
and in order to compute the fixed point, we need to compute its
Jacobian matrix

DT = DT2 × DT1 = ∂X2i+1

∂X2i

× ∂X2i

∂X2i−1
(3.4)

Notice that X2i = �(�2
i

, X2i−1), X2i+1 = �(�1
i

, X2i) and the dura-
tion time �1

i
and �2

i
are dependent on the state variation X2i and

X2i−1, respectively, then the Jacobian matrix ∂X2i
∂X2i−1

and ∂X2i+1
∂X2i

can

be written as the follow form

∂X2i

∂X2i−1
= ∂�

∂�2
i

× ∂�2
i

∂X2i−1
+ ∂�

∂X2i−1
(3.5)

∂X2i+1

∂X2i

= ∂�

∂�1
i

× ∂�1
i

∂X2i

+ ∂�

∂X2i

(3.6)

where ∂�
∂�2

i

= f2(X2i−1), ∂�
∂�1

i

= f1(X2i), while the elements of the

matrices ∂�
∂X2i−1

and ∂�
∂X2i

can be computed by the following vari-

ational equations⎧⎪⎪⎨
⎪⎪⎩

d

dt
(D�) = f2X × D�

∂�

∂X2i−1

∣∣∣∣
t=0

= I

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

d

dt
(D�) = f1X × D�

∂�

∂X2i

∣∣∣∣
t=�2

i

= I
(3.8)

from t = 0 to t = �2
i

and t = �2
i

to t = �2
i

+ �1
i

, respectively. Where
f1X and f2X are the Jacobian matrix of f1 and f2. I is an identity
matrix. Notice that X2i and X2i+1 are on the switching surfaces S1
and S2,3,respectively. That is to say

q1(X2i) ≡ x − x1
ref = 0 (3.9)

q2(X2i+1) ≡ x ± x2
ref = 0 (3.10)
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