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a  b  s  t  r  a  c  t

This  paper  reports  a novel  approach  for constructing  four-dimensional  piecewise-linear  multi-wing
hyperchaotic  differential  dynamic  system.  First,  two basic  four-dimensional  linear  systems  are  obtained.
Then,  by  switching  control  based  on Shilnikov  theorem,  the  double-wing  hyperchaotic  attractors  can
be  generated.  Thirdly,  by mth  shifting  transformation  of  four-dimensional  linear  systems,  multi-wing
hyperchaotic  attractors  are  realized.  The  designed  systems  are  chaotic  in  the  sense  of  Smale  horse-
shoe.  To confirm  the  existence  of hyperchaotic  system,  Lyapunov  exponent  spectrums  are  further
investigated.
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1. Introduction

Recently, a large number of chaotic systems have been inves-
tigated and studied successively because of the great applications
in secure communication, data encryption, flow dynamics as well
as in engineering applications, including Lorenz system, Chua
system, generalized chaotic Lorenz system family [1–4]. In addi-
tion, the famous Chua system can generate various multi-scroll
chaotic attractors based on the extension of saddle-focus equi-
librium points with index 2 [5,6]. Similarly, many other systems
can also create various complex multi-scroll attractors [7–10].
Recently, research for more complex chaotic systems has led
to the finding of multi-wing chaotic attractors [11–13]. Com-
pared with the double-wing and multi-wing chaotic systems,
complex grid multi-wing hyperchaotic systems exhibit more com-
plicated dynamical behaviors and better performance in many
other technological application fields, such as secure communica-
tion systems, where the information is encrypt and the security
performance can be improved by using these complex grid multi-
wing hyperchaotic signals. One may  ask whether or not there is a
general approach for constructing various complex grid multi-wing
hyperchaotic systems? This paper gives a positive answer to the
question.

∗ Corresponding author. Tel.: +86 13610027085.
E-mail address: chaoxia zhang@163.com

It is well known that Shilnikov theorem can be adopted as
the approach for judging whether chaos exists or not in a cer-
tain autonomous system. For instance, the three-dimensional
piecewise-linear Lorenz system and Chua system are analyzed
based on Shilnikov theorem, respectively, and the existence of
Smale horseshoe is also rigorously proved [14,15]. On the other
hand, the Shilnikov theorem could also play a role in theoretical
basis and realization means for constructing chaotic and hyper-
chaotic systems [16–19].

In this paper, from two basic four-dimensional linear sys-
tems, based on Shilnikov theorem, one proposes a new general
approach to construct variable number of multi-wing hyperchaotic
attractors.

The rest of this paper is organized as follows. In Section 2, two
basic four-dimensional linear systems are obtained. In Section 3,
the super-heteroclinic loop is found via switching control and two-
piecewise-linear hyperchaotic system is constructed. In Section 4,
by mth shift transformation of linear systems, multi-piecewise-
linear hyperchaotic systems are further obtained for generating
multi-wing hyperchaotic attractors. In Section 5, Lyapunov expo-
nent spectrums are further investigated. Conclusions are finally
drawn in Section 6.

2. Two basic four-dimensional linear systems

Consider the following two four-dimensional fundamental lin-
ear systems:
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ẋ1

ẏ1
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where a = 20, b = 5, c = 10, e = 0.6„ p = 0.4, q = 1.2. Notice that the
equilibrium points of systems (1) and (2) are O1 = (0, 0, 0, 0) and
O2 = (0, 0, 0, 0), and the corresponding eigenvalues at O1 and O2 are
same as �1 = −18.2194, �2 = 2.1701, and � ± jω = 1.1246 ± j10.2943,
respectively. Obviously, O1 and O2 are saddle-focus equilib-
rium points with index-2. The eigenvectors corresponding to
eigenvalues �1 = −18.2194, �2 = 2.1701, and � ± jω = 1.1246 ±
j10.2943 at the equilibrium point O1 = (0, 0, 0, 0) are solved by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Similarly, the eigenvectors corresponding to the eigenvalues
�1 = −18.2194, �2 = 2.1701, and � ± jω = 1.1246 ± j10.2943 at the
equilibrium point O2 = (0, 0, 0, 0) are obtained as follows:
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It is noticed that the real part of eigenvalues �1, �2 and � ± jω
satisfies the Shilnikov inequality, i.e., |�1| > |�| > 0,|�2| > |�| > 0. Thus,
based on Shilnikov theorem, one can build a super-heteroclinic loop
in four-dimensional space by choosing the stable manifold corre-
sponding to �1 and the unstable manifold corresponding to � ± jω.

According to (3), the stable manifold ES(O1) corresponding
to eigenvalue �1 = −18.2194 and the unstable manifold EU(O1)
corresponding to eigenvalue � ± jω = 1.1246 ± j10.2943 at the equi-
librium point O1 = (0, 0, 0, 0) of system (1) are given by:{

ES(O1) :
x

l1
= y

m1
= z

n1
= u

p1

EU(O1) : A1x + B1y + C1z + D1u = 0
(5)

where l1 = 0.9839, m1 = 0.0360, n1 = −0.1721, p1 = −0.0311,
A1 = −32.4816, B1 = 18.2194, C1 = 11.4998 and D1 = −1.

Similarly, according to (4), the stable manifold
ES(O2)corresponding to eigenvalue �1 = −18.2194 and the
unstable manifold EU(O2) corresponding to eigenvalue
� ± jω = 1.1246 ± j10.2943 at the equilibrium point O2 = (0, 0,
0, 0) of system (2) are solved by:{

ES(O2) :
x

l2
= y

m2
= z

n2
= u

p2

EU(O2) : A2x + B2y + C2z + D2u = 0
(6)

where l2 = 0.9839, m2 = 0.0360, n2 = 0.1721, p2 = −0.0311,
A2 = −32.4816, B2 = 18.2194, C2 = −11.4998 and D2 = −1.

Compared parameters in (5) with (6), One can see the symmetry
between (5) and (6), which is the premise of constructing the two-
piecewise-linear hyperchaotic system with super-heteroclinic loop
and Smale horseshoe.

3. Constructing four-dimensional piecewise-linear
hyperchaotic system

According to above two  basic four-dimensional linear systems
(1) and (2), one can further find the super-heteroclinic loop and
calculate its necessary parameters via switching control strategy.
The equilibrium points of systems (1) and (2) are O1 = (0, 0, 0, 0) and
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