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a  b  s  t  r  a  c  t

In  this  paper,  an experimental  apparatus  for the  analysis  of  biological  cells  light  scattering  in liquid
suspensions  has been  presented.  Firstly,  an  algorithm  of  the  discrete  sources  method  (DSM) is  applied
to  model  light  scattering  from  a cell particle.  In  our model,  a monochromatic  laser beam  scattered  by
cell  particles,  which  can  be  inorganic,  organic,  or biological  cells  (animal  cells and  bacteria)  and  the
scattering  characteristic  is  analyzed  with  morphology  and  the  refractive  index  of  the  cell particles.  In
contrast  to  traditional  volume-based  methods  which  are  widely  used  for light  scattering  simulation,  DSM
allows  calculation  of  scattering  for all incident  angles  and  polarizations  at  once.  This  leads  to  an  essential
reduction  of the  computing  time.  The  DSM  algorithm  allows  using  a lower  number  of  elementary  sources
which  results  in an  increased  accuracy  of  approximation  for every  harmonic.  Secondly,  in  order  to  study
light  scattering  in  biological  cells  close  to  the  actual  situation,  we  focus  on  non-spherical  particles  in the
cell-culture  medium.  Finally,  we  demonstrate  the light  scattering  results  of bovine  kidney  cells  suspended
in the  cell-culture  medium,  and  compares  with  the  simulated  results.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Light scattering theory plays an important role in detection and
characterization of small particles in various fields of science, for
example, remote sensing of aerosols, detection of interstellar dust,
quality control in industrial applications and characterization of
biological cells. Since, in 1957, Prof. van de Hulst published his
well-known book Light Scattering by Small Particles [1]. The study
of light scattering by small regular particles has been and still is
a subject of great interest in many different scientific disciplines
for many years [2–14]. It is well known that most of these applica-
tions use theoretical models based on idealized conditions such as
perfect spheres, perfect homogeneous particles, symmetric parti-
cles, etc. Despite extensive research, knowledge of light scattering
of more complex structured particles is still limited. In the past, a
variety of different methods has been developed to deal with the
scattering problem of, in particular, spherical and non-spherical
objects [15–22]. In general, they differ in the approaches used,
and consequently, in their capabilities to compute the scattering
behavior of various particle classes. Corresponding computer pro-
grams are sophisticated, tested, and partly publicly available (see,
e.g., [17,18] for a database of numerous programs hosted by the
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University of Bremen). However, they may  lead to slightly differ-
ent numerical results for a given scattering problem. This can also
be the case for various implementations of the same method or
even for different versions of the same program. The differences
may  increase when approaching the limits of the algorithms. On
the other hand there are cases where only one single method exists
for treating special scattered types so that no comparative calcu-
lations with alternative methods are possible for validating the
results obtained. In all these cases, it is up to the user to finally judge
the accuracy and correctness of the findings. This is, e.g., important
in characterization of biological cells. Different scattering models
can lead to different results in the data processing and finally to
different conclusions.

To study its practical use, we  investigated the fulfillment of the
reciprocity condition by existing publicly available scattering pro-
grams, considering different particles of relatively complex shape.
The results of this study are presented here. In Section 2 the numer-
ical simulation of light scattering by different scales cells are given.
In Section 3 the experimental apparatus and samples are presented.
In Section 4 the numerical results and experimental results are
compared and discussed. Some conclusions are given in Section 5.

2. Theory

Originally, the theoretical principles of the DSM were estab-
lished about 40 years ago independently by Kupradze [23] in the
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Soviet Union and Yasuura [24] in Japan. The first version of the
DSM was published in 1980 by Sveshnicov and Eremin [25]. Since
then several research groups have been working on this world-
wide. Recently, the method was modified for light scattering by a
wide variety of objects, from long fibers [26] to oblate spheroids and
concave particles. Also evanescent scattering [27] can be calculated.
The DSM is a semi-analytical method. A mathematical statement of
the light scattering problem in a frame of DSM consists of Maxwell
equations, transmission conditions at the interface and obstacle
boundary and infinity conditions to provide the unique solution.
An approximate solution is constructed as a linear combination of
fields of discrete sources (multipoles or dipoles deposited in a sup-
plementary domain) with certain amplitudes, so that it satisfies all
the conditions of a boundary value scattering problem except the
boundary conditions on an obstacle surface. The last condition is
used to determine the amplitudes of discrete sources using a gen-
eralized point matching scheme. Contrary to other methods DSM
has the advantage that it allows to estimate a posterior error by
calculating the surface residual on the obstacle boundary and effi-
ciently makes use of axial symmetry of the scatterer. In this way
computational time is reduced.

A comprehensive overview of the DSM can be found in the book
of Eremin et al. [28].

Usually the discrete sources are placed on the axis of symmetry.
Consider scattering in an isotropic homogeneous medium in R3

of an electromagnetic wave by a local homogeneous penetrable
obstacle Di with a smooth boundary. Let us introduce a cylindrical
coordinate system (z, �, ϕ) where, z is the axis of symmetry of the
particle and �i is an incident angle with respect to. Then the math-
ematical statement of the scattering problem can be formulated in
the following form:

∇ × He,i = ikεe,iEe,i, ∇ × Ee,i = −ik�e,iHe,i in De,i (1)

nP × (Ei (P) − Ee (P)) = nP × E0(P), nP × (Hi − H0)

= nP × H0(P)P ∈ ∂D (2)

and Silver Muller radiation condition for the scattered field at infin-
ity.

Here
{

E0, H0
}

is an exciting field, nP is the outward unit normal
vector to ∂D, index e belongs to the external domain De, k = ω/c, ε, �
are permittivity and permeability, Imεe, �e ≤ 0 (time dependence
for the fields is chosen as exp

{
jωt

}
) and the particle surface is

smooth enough ∂D { C(1,˛), Then the above boundary-value problem
is uniquely solvable [29].

The DSM is based on the conception of an approximate solution.
The approximate solution is constructed as a finite linear combina-
tion of discrete sources (DS): dipoles and multipoles deposited in a
supplementary domain inside the particle with certain amplitudes.
Usually as such a domain the axis of symmetry of the particle is
used. In case of an oblate particle like erythrocyte, disk or oblate
spheroid, it is not always possible to use the axis of symmetry [30].
For this purpose an analytical continuation to a complex plane is
constructed. More detailed information can be found in [31]. The
deposition of DS in a complex plane allows reducing calculation
errors and time of computations.

In case of P-polarized plane wave the exciting field accepts the
following form:

E0 = (ex cos �0 + ez sin �0) exp
{

−jke(x sin �0 − z cos �0)
}

H0 = −ey cos �0 exp
{

−jke(x sin �0 − z cos �0)
}

where, ke = k
√

εe�e

To take into account the polarization of the external excitation
we use linear combinations of electrical and magnetic multipoles.

For this special vector potentials are used. For the P-polarized wave
in a cylindrical coordinate system they can be represented as:
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m is a spherical Hankel function

and jm is a spherical Bessel function. Hence, the approximate solu-
tion for the P-polarized wave accepts the form:

(
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The approximation solution for the case of a S-polarized excita-
tion is constructed in a similar way  and has the form:
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(5)

More details can be found in [30].
The constructed approximate solutions Eqs. (4) and (5) satisfy

Maxwell equations in Eq. (1) and radiation conditions for the scat-
tered fields at infinity. The unknown vector of amplitudes of DS

pm =
{

pe,i
mn, qe,i

mn, re,i
n

}Nm
e,i

n=1

is to be determined from the transmission conditions Eq. (2). As it
was mentioned above, DS are situated in a complex plane adjoined
to the symmetry axis of the particle. The approximate solutions
Eqs. (4) and (5) are finite linear combinations of Fourier harmon-
ics with respect to the ϕ angle variable. Therefore, after resolving
the plane wave excitation into Fourier series with respect to the
ϕ angle, we  reduce the two-dimensional approximation problem
enforced at the particle surface to a set of one-dimensional prob-
lems at the particle generatrix. For solving these problems, the
general matching-point technique is applied, more details can be
found in [30].

The exactness of the result is provided by stabilization of the
scattering diagram and a posterior residual calculation.
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