Contents lists available at ScienceDirect

Journal of Molecular and Cellular Cardiology

journal homepage: www.elsevier.com/locate/yjmcc

Original article

*I*_f blocking potency of ivabradine is preserved under elevated endotoxin levels in human atrial myocytes

Susanne Scheruebel ^a, Chintan N. Koyani ^b, Seth Hallström ^c, Petra Lang ^a, Dieter Platzer ^a, Heinrich Mächler ^d, Karl Lohner ^e, Ernst Malle ^b, Klaus Zorn-Pauly ^{a,*}, Brigitte Pelzmann ^{a,*}

^a Institute of Biophysics, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria

^b Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria

^c Institute of Physiological Chemistry, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria

^d Division of Cardiac Surgery, Medical University of Graz, Auenbruggerplatz, A-8010 Graz, Austria

^e Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstrasse 6, A-8042 Graz, Austria

A R T I C L E I N F O

Article history: Received 12 December 2013 Received in revised form 23 January 2014 Accepted 14 February 2014 Available online 25 February 2014

Keywords: Human pacemaker current HCN channel Ivabradine Lipopolysaccharide Patch clamp Sinoatrial cell model

ABSTRACT

Lower heart rate is associated with better survival in patients with multiple organ dysfunction syndrome (MODS), a disease mostly caused by sepsis. The benefits of heart rate reduction by ivabradine during MODS are currently being investigated in the MODI_fY clinical trial. Ivabradine is a selective inhibitor of the pacemaker current I_f and since I_f is impaired by lipopolysaccharide (LPS, endotoxin), a trigger of sepsis, we aimed to explore I_f blocking potency of ivabradine under elevated endotoxin levels in human atrial cardiomyocytes. Treatment of myocytes with S-LPS (containing the lipid A moiety, a core oligosaccharide and an O-polysaccharide chain) but not R595 (an O-chain lacking LPS-form) caused I_f inhibition under acute and chronic septic conditions. The specific interaction of S-LPS but not R595 to pacemaker channels HCN2 and HCN4 proves the necessity of O-chain for S-LPS-HCN interaction. The efficacy of ivabradine to block I_f was reduced under septic conditions, an observation that correlated with lower intracellular ivabradine concentrations in S-LPS- but not R595-treated or I_f under septic conditions, ivabradine further decelerated pacemaking activity. This novel finding, i.e. I_f inhibition by ivabradine under elevated endotoxin levels in vitro, may provide a molecular understanding for the efficacy of this drug on heart rate reduction under septic conditions in vivo, e.g. the MODI_fY clinical trial.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Sepsis, a microbial induced inflammatory response, encompasses a spectrum of illness that ranges from systemic infection to multiple organ dysfunction syndrome (MODS) [1]. Mortality due to septic cardiac dysfunction has been encountered in critically ill patients [2] where an increased heart rate may act as an independent risk factor [3]. Patients with lower heart rate in the early phase of MODS have better survival rates than those with higher heart rate [3].

Sepsis is induced by lipopolysaccharide (LPS, endotoxin), a major component of the outer cell wall of gram-negative bacteria. Notably, LPS from wild type bacteria usually is a mix of S-form LPS and varying proportions of so-called R-form LPS [4]. S-form LPS consists of three entities: the lipid A moiety, that harbours the endotoxic activity of the entire molecule, the core oligosaccharide and the O-polysaccharide chain, that is absent in R-form LPS [5,6]. Irrespective of their structural

E-mail addresses: klaus.zornpauly@medunigraz.at (K. Zorn-Pauly),

brigitte.pelzmann@medunigraz.at (B. Pelzmann).

components, both LPS forms are capable to initiate sepsis by triggering the inflammatory response [7]. Besides initiating the inflammatory response. S-form LPS directly affects ionic channels of immune. neuronal and cardiovascular cells [8–10], the latter include channels conducting the pacemaker current $I_{\rm f}$. This current is a mixed Na⁺/K⁺ inward current carried by pacemaker channels comprising four different homo- or heteromeric isoforms of hyperpolarization-activated cyclic nucleotide-gated (HCN 1-4) channels [11]. I_f plays an important role in the regulation of heart rate [12] by contributing to the slow diastolic depolarization phase that determines the firing rate of spontaneous action potentials of sinoatrial node cells [13]. Moreover, in response to autonomic transmitters, If contributes to the chronotropic regulation of heart rate [13]. Previously, we reported *I*_f loss-of-function in human atrial myocytes after chronic S-LPS treatment, an observation that in turn might be responsible for reduction of heart rate variability during sepsis [14,15]. Meanwhile it was shown that S-form LPS also acutely impairs $I_{\rm f}$ [16,17] and that the polysaccharide part (O-chain) of the LPS molecule [16] is necessary for reduction of pacemaker channel activity.

Beta-blocker administration has been shown to reduce mortality in MODS [18,19]. However, negative inotropic effects of beta-blockers

0022-2828/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

^{*} Corresponding authors. Tel.: +43 316 380 4145; fax: +43 316 380 9660.

restrict its use in the majority of patients. Therefore, ivabradine may be considered as an alternative therapeutic approach to reduce heart rate. This drug is a pure heart rate lowering agent that selectively inhibits $I_{\rm f}$ [20]. Ivabradine blocks pacemaker channels in a use-dependent way being more effective at higher heart rate while its action declines during bradycardia [21,22]. Blocking of pacemaker channels by ivabradine requires three steps: diffusion through the cell membrane, opening of respective channels and intracellular binding of the drug to the channel pore [20,23]. Heart rate reduction by ivabradine has been found to be beneficial in the treatment of cardiovascular disease, since it lowers heart rate without adversely affecting other cardiovascular functions [24].

Currently, the MODI_fY trial carefully investigates potential benefits of heart rate reduction by ivabradine in sepsis and MODS [19]. Since S-LPS substantially inhibits I_f and ivabradine is administered in septic patients (MODI_fY trial), we hypothesized that I_f reduction by S-LPS might interfere with ivabradine action on I_f . From a clinical perspective, the efficacy of I_f inhibition by ivabradine under septic conditions is of special therapeutic relevance.

In this study we investigated the effect of S-LPS and R595 on human atrial I_f under acute and chronic septic conditions as well as the interaction of both endotoxins with HCN channels. Next, we focused on the effect of endotoxins on (i) I_f reduction by ivabradine and (ii) intracellular ivabradine concentrations. Finally, using a computer simulation model we tried to explore the efficacy of ivabradine on deceleration of sinoatrial pacemaking activity under septic conditions.

2. Material and methods

A detailed Materials and methods section on isolation of cardiomyocytes [25–27], cell culture [28], myocyte treatments, patch-clamp measurements [14,29,30], immunoprecipitation [31], Western blot and immuno-dot-blot [32], qPCR [33], determination of ivabradine concentrations by HPLC [34] and sinoatrial pacemaker cell modeling [35] is available under the online supplemental section.

3. Results

3.1. Representative recordings of If of human atrial myocytes

Fig. 1 shows representative traces of $I_{\rm f}$ under control (Fig. 1A), ivabradine (Fig. 1B) and septic conditions (mimicked *in vitro* by LPS incubation, Figs. 1C and D) elicited by hyperpolarizing voltage steps from -40 to -130 mV. $I_{\rm f}$ was considered to be present when current

Fig. 1. Representative pacemaker current recordings of human atrial myocytes. Pacemaker currents (pA) were recorded by hyperpolarizing voltage steps ranging from -40 to -130 mV (10 mV increment, holding potential -40 mV, 3 s duration) and normalized to cell capacitance (pF) for a control cell (A) and for cells treated with indicated concentrations of ivabradine (7 min) (B), S-LPS (6 h) (C) or R595 (6 h) (D). Arrows indicate current at -70 mV.

Download English Version:

https://daneshyari.com/en/article/8474819

Download Persian Version:

https://daneshyari.com/article/8474819

Daneshyari.com