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a  b  s  t  r  a  c  t

The  convolution  theorem  for the linear  canonical  transform  (LCT)  is of  importance  in  signal  processing
theory  and  application.  Recently,  some  attempts  at extending  the  convolution  theorem  in  the  Fourier
transform  (FT)  domain  to the  LCT domain  have  derived  many  important  results,  which  are  very useful
and  effective  in  filter  design  and signal  reconstruction,  but  none  of  them  generalize  very  nicely  and
simply  the classical  result  for the  FT. In this  paper,  we  formulate  a new  kind of convolution  structure  for
the  LCT,  which  has  the elegance  and  simplicity  in  both  time  and  LCT domains  comparable  to  that  of  the
FT  and preserves  the  commutative  and  associative  properties.  Then  with  the  new  convolution  theorem,
it  is  easy  to implement  in the designing  of  multiplicative  filters  through  both  the new  convolution  in
the  time  domain  and  the  product  in the  LCT  domain,  and  it is  convenient  to deduce  the  Shannon-type
reconstruction  formula  for bandlimited  signals  in  the  LCT  domain.  Theoretical  analyses  and  numerical
simulations  are  also  presented  to  show  the  correctness  and effectiveness  of the  proposed  techniques.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The convolution and product theorems play a significant role
in many fields of signal processing [1]. It is clear that the classical
convolution theorem for the Fourier transform (FT) is very conve-
nient and powerful for the designing of multiplicative filters in the
FT domain. It is given by [1]

f (t) ∗ g(t) = (f ∗ g)(t) =
∫ +∞

−∞
f (�)g(t − �)d�, (1)

(f ∗ g)(t)
FT←−F(u)G(u), (2)

where * stands for the conventional convolution operation in the
time domain, and F(u) and G(u) represent the FTs of the signals f(t)
and g(t), respectively. As shown in (1) and (2), this theorem exhibits
the following characteristics and applications:

(i) In the time domain, the convolution of two signals takes a sin-
gle integral expression, and then the designed filters can be
achieved easily through the convolution in the time domain.

(ii) In the transformation (FT) domain, the expression takes a sim-
ple multiplication of the signals’ transformations (FTs), and
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then the multiplicative filters can be achieved easily through
the product in the transformation (FT) domain.

(iii) The convolution exhibits the commutative property, which
sees great use in digital signal processing for manipulating
equations [2].

(iv) The convolution exhibits the associative property, which is
used in system theory to describe how cascaded systems
behave, that is, any number of cascaded systems can be
replaced with a single system [2].

Moreover, based on this theorem, the classical Shannon samp-
ling theorem can be deduced expediently [3].

The linear canonical transform (LCT) is a class of linear integral
transform with three free parameters [4–11]. It can be considered
as a quadratic phase system (QPS), which is one of the most impor-
tant optical systems and is implemented with an arbitrary number
of thin lenses and propagation through free space in the Fresnel
approximation or through sections of graded-index media [12].
Then it can be defined as the output light field of the QPS [13].

FA(u) = LA[f (t)](u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ +∞

−∞
f (t)KA(u, t)dt, b /= 0

√
de

j
cd

2
u2

f (du), b = 0

,  (3)
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where

KA(u, t) = 1√
j2�b

e
j
(

d
2b

u2− 1
b

ut+ a
2b

t2
)

(4)

is the LCT kernel with parameter matrix A = (a, b;c, d) and the
parameters a, b, c, d are real numbers satisfying ad − bc = 1. Some
well-known signal analysis tools, for instance, the FT, the fractional
Fourier transform (FRFT), the Fresnel transform (FST), and the scal-
ing operations are all special cases of the LCT [14]. It was  applied
to solve the differential equations and analyze the optical systems
and has recently attracted much attention due to its preponderance
for processing non-stationary signals. The LCT also has found many
applications in optics, pattern recognition, filter design, and radar
and sonar systems analysis [15–18]. With in-depth research on it,
many important theories and concepts in the FT and FRFT domains
have been extended into the LCT domain, including the convolution
and product theorems [19–27].

Deng et al. firstly discussed the convolution and product theo-
rems for the LCT and proposed a convolution structure on the basis
of the conventional convolution directly [19]. It takes the form

(f ∗ g)(t)
LCT←− 1
|a| e

j c
2a

u2
∫ +∞

−∞
FA(v)e−j c

2a
v2

g
(

u − v
a

)
dv. (5)

Compared with the classical result in the FT domain, this definition
of convolution theorem satisfies (i), (iii) and (iv), but (ii) does not
hold since it is complicated to reduce the right-hand-side of (5) to a
simple multiplication of the signals’ LCTs. Therefore, it is inconve-
nient for the discussion of multiplicative filters in the LCT domain
by use of (5). In [19], Deng et al. formulated another convolution
theorem for the LCT to address the above constraint. Here, we show
it below:

(f
A∗g)(t) = 1√

j2�b
e−j a

2b
t2

((f (t)ej a
2b

t2
) ∗ (g(t)ej a

2b
t2

)), (6)

LA[(f
A∗g)(t)](u) = FA(u)GA(u)e−j d

2b
u2

, (7)

where
A∗ represents the modified convolution operation for the

LCT. Wei  et al. also derived this theorem from the point of view
of rewriting the modified convolution expression as a simple
one-dimensional integral and defining a convolution operation
associated with a weight function, respectively [20]. It can be seen
from a single integral reproduced here [20,21],

(f
A∗g)(t) = 1√

j2�b

∫ +∞

−∞
f (�)g(t − �)ej a

b
�(�−t)d�, (8)

where ej a
b

�(�−t) is a so-called weight function. From (7), although
the multiplicative filters can be achieved theoretically through
the product in the LCT domain, there exists an extra chirp multi-
plier which imposes difficulty in real applications since it is nearly
impossible to generate a chirp signal accurately in practical engi-
neering. For this, two kinds of convolution structures for the LCT
were presented to eliminate the chirp multiplier in the right-hand-
side of (7).

To be specific, according to (1) and (2) and the relationship
between the LCT and FT, Wei  et al. [22] introduced a new convolu-
tion structure which has the form [22–24]

(f
A
∗̄g)(t) = e−j a

2b
t2

((f (t)ej a
2b

t2
) ∗ (g(t)))

=
∫ +∞

−∞
f (�)g(t − �)ej a

2b
(�2−t2)d�, (9)

LA[(f
A
∗̄g)(t)](u) = FA(u)G

(
u

b

)
, (10)

where
A
∗̄ denotes the further-modified convolution operation. In

reality, this structure of convolution was  first introduced by Shi
et al. in [24] in terms of the FRFT, a special case of the LCT. This
further-modified convolution is equivalent to the definition given
by (6)–(8) but contains lesser chirp multipliers, and hence it is
easier to implement in filter design through both convolution in
the time domain and product in the LCT domain. Meanwhile, the
further-modified convolution exhibits the distributive property,
which describes the operation of parallel systems with added out-
puts and allows this kind of systems to be replaced with a single
system, playing a fundamental role in multichannel sampling and
reconstruction. However, this convolution does not exhibit the
commutative and associative properties, and therefore, the applica-
tions performed in (iii) and (iv) are subjected to certain restrictions.
Moreover, from mathematics point of view this new definition does
not parallel with the classical result for the FT because of non-
symmetric multiplication expression in the LCT domain, as implied
by the right-hand-side of (10). Another new convolution structure
for the LCT obtained by Wei  et al. preserves exact multiplication
of the signals’ LCTs in the LCT domain comparable to exact multi-
plication of the signals’ FTs in the FT domain of the classical result,

defining a generalized convolution operation
A

� [25], i.e.,

(f
A

�g)(t)

=
∫ +∞

−∞
f (�)g(t��)d�

= 1
2�|b|

∫ +∞

−∞
f (�)e−j a

2b
(t2−�2)

(∫ +∞

−∞
GA(u)ej 1

b
u(t−�)du

)
d�, (11)

(f
A

�g)(t)
LCT←−FA(u)GA(u), (12)

where g(t��) stands for the generalized translation for the LCT.
As shown in (12), this generalized convolution theorem has the
elegance and simplicity in the LCT domain comparable to the con-
volution theorem for the FT in the FT domain, and then it is very
easy to implement in filter design through the product in the LCT
domain. Meanwhile, the generalized convolution exhibits the com-
mutative, associative and distributive properties, having a number
of applications for manipulating equations, simplifying cascaded
systems and analyzing multichannel systems. However, the gener-
alized convolution expression is a triple integral form, and hence it
is complicated to turn it into a single integral form, as implied by
(11). Therefore, it causes heavy computational load to achieve filter
design through the generalized convolution in the time domain.

In order to formulate a closed-form expression for LCT’s convo-
lution theorem, Shi et al. proposed a kind of unified convolution
structure for the LCT by use of an unified canonical convolution
operation �A1,A2,A3 [26], that is,

(f�A1,A2,A3 g)(t) =
∫ +∞

−∞
f (�)(TA1

� g)(t)�a1,a2,a3 (t, �)d�, (13)

LA3 [(f�A1,A2,A3 g)(t)](u) = �d1,d2,d3
(u)FA1

(
ub1

b3

)
GA2

(
ub2

b3

)
. (14)

Although this unified convolution theorem is a generalization of
the classical convolution theorem for the FT and the modified and
further-modified convolution theorems for the LCT, it lacks concin-
nity and simplicity and then has little advantage in applications. In
reality, the authors merely considered the application of it in the
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