ARTICLE IN P

Journal of Molecular and Cellular Cardiology xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Journal of Molecular and Cellular Cardiology

journal homepage: www.elsevier.com/locate/yjmcc

Review article 1

Article history:

Keywords:

NHF

NBC

NCX pH_i-regulation

acidosis

Na⁺-influx

6

9

10

11

12

18

16

17

18

19

2021

22

41 40

<u>4</u>3

H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to **O3**2 intracellular pH 3

Carolina D. Garciarena, Jae Boum Youm, Pawel Swietach, Richard D. Vaughan-Jones* 014

Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK 5

ARTICLE INFO

Received in revised form 2 April 2013

Received 28 February 2013

Accepted 3 April 2013

Available online xxxx

ABSTRACT

Acid extrusion on Na⁺-coupled pH-regulatory proteins (pH-transporters), Na⁺/H⁺ exchange (NHE1) and 23 Na⁺-HCO₃⁻ co-transport (NBC), drives Na⁺ influx into the ventricular myocyte. This H⁺-activated Na⁺-influx 24 is acutely up-regulated at $pH_i < 7.2$, greatly exceeding Na⁺-efflux on the Na⁺/K⁺ ATPase. It is spatially het- 25 erogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at 26 intercalated discs. Overall Na+-influx via NBC is considerably lower, but much is co-localised with L-type 27 Ca²⁺-channels in transverse-tubules. Through a functional coupling with Na⁺/Ca²⁺ exchange (NCX), H⁺-activated 28 Na⁺-influx increases sarcoplasmic-reticular Ca²⁺-loading and release during intracellular acidosis. This raises 29 Ca²⁺-transient amplitude, rescuing it from direct H⁺-inhibition. Functional coupling is biochemically regulated 30 and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic 31 Na⁺-mobility, as NHE1 and NCX are spatially separated (up to 60 µm). The relevant functional NCX activity must 32 be close to dyads, as it exerts no effect on bulk diastolic Ca^{2+} . H⁺-activated Na⁺-influx is up-regulated during 33 ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system 34for therapeutic manipulation. 35 36

This article is part of a Special Issue entitled 'Na + Regulation in Cardiac Myocytes SI'. © 2013 Elsevier Ltd. All rights reserved. 37

Contents

14	1.	Introduction
45	2.	NHE, NBC and the regulation of pH _i
46		2.1. General model of pH _i regulation
17		2.2. NHE1 and NBC activity is controlled by pH _i
18		2.3. Spatial sarcolemmal distribution of NHE1 and NBC
19	3.	H ⁺ _i -activated Na ⁺ influx
50	4.	$Ca^{2+}-H^+$ coupling in heart: the role of H^+ -activated Na^+ influx
51		4.1. Na_{i}^{+} controls Ca^{2+} transient (CaT) amplitude during acidosis
52		4.2. Functional NHE1/NCX coupling requires efficient Na ⁺ _i mobility
53		4.3. Na ⁺ _i does not control diastolic Ca ²⁺ during acidosis $\dots \dots \dots$
54	5.	Regulation of H ⁺ -activated Na ⁺ influx
55	6.	Pathophysiological role of H^+ -activated Na ⁺ influx in heart disease 0
56		6.1. Ischaemia/reperfusion 0
57		6.2. Maladaptive hypertrophy & heart failure
58	7.	Conclusions 0
59	8	Disclosures
30	Ack	nowledgments 0
31	Refe	nenres 0
11	Refe	

62

Abbreviations: pH_i, intracellular pH; pH transporters, pH regulatory proteins; NHE, Na⁺/H⁺ exchange; NBC, Na⁺-HCO₃⁻ co-transport; NCX, Na⁺/Ca²⁺ exchange; SR, sarcoplasmic reticulum; SERCA, sarcoplasmic reticular Ca²⁺ ATPase; PMCA, plasmalemmal Ca²⁺ ATPase; LTCC, sarcolemmal L-type Ca²⁺ channel; RyR, ryanodine receptor; MCT, monocarboxylic acid transporter; CBE, Cl⁻/HCO₃⁻ exchange; CHE, Cl⁻/OH⁻ exchange; t-tubules, transverse tubules; CaT, Ca²⁺ transient; DAD, delayed after-depolarisation; CA, carbonic anhydrase; MAPK, mitogen activated protein kinase; PKC, protein kinase C.

Corresponding author at: Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, OX1 3PT, Oxford, UK. Tel./fax: +44 1865 272451. E-mail address: richard.vaughan-jones@dpag.ox.ac.uk (R.D. Vaughan-Jones).

0022-2828/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.yjmcc.2013.04.008

Please cite this article as: Garciarena CD, et al, H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH, J Mol Cell Cardiol (2013), http://dx.doi.org/10.1016/j.yjmcc.2013.04.008

2

ARTICLE IN PRESS

C.D. Garciarena et al. / Journal of Molecular and Cellular Cardiology xxx (2013) xxx-xxx

63 1. Introduction

Intracellular Na⁺ and H⁺ ions are important signalling messen-64 65 gers in cardiac cells. H⁺ ions exist in cytoplasm at a concentration of $\sim 60 \text{ nM}$ (equivalent to a pH_i of 7.2). They are highly reactive 66 end-products of metabolism, arising from multiple sources, such as 67 lactic acid, ketone bodies, CO₂-hydration (generating H⁺ and HCO₃⁻ 68 69 ions), and net ATP hydrolysis. H⁺_i levels can fluctuate on a seconds-70 to-minutes time-scale during physiological manoeuvres (e.g. changes 71of heart-rate and cardiac work-load), and under pathophysiological conditions like myocardial ischaemia. H⁺ ions interact with, and 72strongly modulate, the function of many intracellular proteins. In car-73diac myocytes these include the myofilaments and their regulatory 74 protein, troponin [1], resulting in a decrease in myocyte contraction 75[2]. They also include numerous proteins associated with intracellular 76 Ca^{2+} ion signalling, such as the sarcolemmal Na^+/Ca^{2+} exchanger 77 (NCX) [3,4], the sarcoplasmic reticular (SR) Ca^{2+} ATPase (SERCA) 78 (plus its regulatory protein, phospholamban) [5–7], plasmalemmal 79 Ca^{2+} ATPase (PMCA) [8], sarcolemmal L-type Ca^{2+} channels (LTCCs) 80 [9] and ryanodine receptors (RyRs, the SR Ca^{2+} -release channels) 81 [10–12]. Not surprisingly, therefore, H⁺ ions induce complex changes 82 83 in Ca²⁺ signalling. In contrast, intracellular Na⁺ ions reside in ventricu-84 lar myocytes at a concentration of 7-10 mM. Their levels can also fluctuate on a seconds-to-minutes timescale, although they exert little or 85 no direct physiological effect on the myofilaments. But they exert a 86 powerful indirect effect on intracellular Ca²⁺ signalling. This is because 87 they bind to, and are transported by NCX, at the sarcolemmal mem-88 brane. As a result, [Na⁺]_i secondarily modulates [Ca²⁺]_i, and hence 89 90 Ca²⁺-signalling and the cardiac myocyte's inotropic state [13,14].

It is notable that Na⁺ ions are key counter and co-ions on the prin-91 92 cipal intracellular pH (pH_i) regulatory membrane transporters (pH transporters), Na^+/H^+ exchange (NHE) and $Na^+-HCO_3^-$ co-transport 93 (NBC) [15]. During acidosis, this creates an intimate link between 94[H⁺]_i, [Na⁺]_i, intracellular Ca²⁺ signalling and contraction, mediated 95through a functional coupling among the activities of NCX, NHE, and 96 NBC proteins [2,14] (for review see [16]). Furthermore the physiological 97 range of H⁺ and Ca²⁺ ions, at either end of this ionic sequence, is of a 98 comparable order of magnitude, operating in the tens to hundreds of 99 nanomolar units. H⁺, Na⁺ and Ca²⁺ form a triumvirate of intracellular 100 ions with intricate cross-talk. This can be regarded as a supra-signalling 101 system that dictates cardiac function. When considering the role of car-102 diac pH transporters in the regulation of [Na⁺]_i, it is important to assess 103 not only their expression and associated Na⁺ flux, but also their role in 104 coupling Ca^{2+} with H^+ ion signals in the heart. 105

106 2. NHE, NBC and the regulation of pH_i

107 2.1. General model of pH_i regulation

The schematic diagram shown in Fig. 1A has been derived from 108 experiments on mammalian ventricular tissue or enzymically isolated 109 110 myocytes, for a variety of species, including human [17,18]. Two of the generic pH transporters, NHE and NBC, are Na⁺-coupled. These 111 proteins operate by directly exporting H⁺ ions (NHE), or by im-112porting HCO_3^- anions (NBC) that neutralise cytoplasmic H^+ ions 113(generating CO₂ that fluxes from the cell). NHE and NBC are second-114 ary active transport proteins, coded for by different gene families. 115NHE1 (SLC9A1) [19], the only NHE isoform expressed at the sarco-116 lemma, electroneutrally counter-transports 1Na⁺ for 1H⁺ (but cf 117 [20]). Generic NBC co-transports Na⁺ with HCO_3^- . At least two isoforms 118 are expressed at the sarcolemma, NBCn1 (SLC4A7) [21], which exhibits 119 an electroneutral 1Na⁺:1HCO₃⁻ stoichiometry, and NBCe1 (SLC4A4) 120**Q4**121 which is electrogenic, with a $1Na^+:2HCO_3^-$ stoichiometry [22–24]. There is some dispute that the transported anion may be CO_3^{2-} rather 122than HCO_3^{-} [25], but pH_i data are interpreted in terms of membrane 123 124 HCO₃⁻ flux. NBCn1 expression has only recently been confirmed in ventricular myocytes [26], although its atrial expression has long been 125 known [27]. Protein expression of isoform NBCe2 in mammalian cardiac 126 myocytes has yet to be conclusively demonstrated. 127

The other three generic pH transporters shown in Fig. 1A, CI^-/HCO_3^- 128 exchange (CBE), CI^-/OH^- exchange (CHE), and a monocarboxylic acid 129 transporter (MCT), also contribute to pH_i regulation (see legend to 130 Fig. 1), but these transporters are not Na⁺-coupled, and so are not 131 discussed further. For more details, see [16].

133

164

2.2. NHE1 and NBC activity is controlled by pH_i

Acutely acid-loading an isolated ventricular myocyte (i.e. raising 134 $[H^+]_i$, thus reducing pH_i) promotes global acid extrusion from the 135 cell. Cytoplasmic pH then recovers to control levels within a few mi-136 nutes, as shown in Fig. 1B. This recovery is due to the activity of NHE1 137 and NBC. For example, it is inhibited by the removal of Na⁺ from the 138 extracellular medium (not shown). To gain insight into Na⁺ influx 139 during pH_i homeostasis, one can quantify acid efflux through each 140 transporter-type in the native cell, and then translate this into Na⁺ 141 influx, knowing the transport stoichiometry. 142

Because the intracellular compartment is so highly buffered [28], 143 the nM changes of [H⁺]_i indicated in Fig. 1B are actually achieved 144 through the export of mM quantities of acid, and thus the import of 145 comparable quantities of Na⁺. Acid efflux has been quantified in panel 146 C, which plots H^+ -equivalent efflux versus pH_i. Dissection of flux com- 147 ponents due to NHE1 and NBC has been achieved by selectively 148 inhibiting either NHE1 or NBC, using extracellular ion-substitution, 149 or inhibitor drugs like amiloride and the highly selective analogue, 150 cariporide (for NHE1) [29], and the N-cyanosulphonamide drug, S0859 151 (for generic NBC) [30], or selective inhibitory antibodies (for NBCe1 152 [31]). Note that global acid efflux is greatly enhanced at low pH_i, 153 where the flux is dominated by NHE1 activity. In contrast, both NHE1 154 and NBC transporters operate at comparable but low acid efflux rates 155 (about 0.5 mM/min) when pHi is at its normal steady-state value 156 of ~7.2 [15]. Because of their coupling to extracellular Na⁺, NHE1 and 157 NBC will therefore mediate an intracellular H⁺-activated Na⁺-influx 158 across the sarcolemma. Given that H⁺ ions are universal metabolic 159 end-products, this Na⁺ influx can become linked to biochemical H⁺ $_{160}$ ion production, and hence metabolic stress. The subsequent Na⁺ 161 load induced by the influx must then be extruded by the sarcolemmal 162 Na^+/K^+ ATPase. 163

2.3. Spatial sarcolemmal distribution of NHE1 and NBC

Immunofluorescent antibody staining (Fig. 1D) indicates that 165 NBCe1 and NBCn1 proteins are expressed in all sarcolemmal mem- 166 brane zones of the ventricular myocyte, most notably in the trans- 167 verse tubules. In contrast, NHE1 is largely excluded from transverse 168 tubules but is evident in lateral sarcolemma, and particularly promi- 169 nent at the ends of the cell (intercalated disc regions). This transport- 170 er distribution has been confirmed in functional experiments where 171 isolated, ventricular cells were detubulated (by transient osmotic 172 shock using 1.5 M formamide; Fig. 2A). Detubulated cells displayed 173 no change in the magnitude of acid extrusion through NHE1, but a 174 40% reduction in generic NBC activity, consistent with NBC mediating 175 acid extrusion from transverse tubular (t-tubular) regions [26]. T-tubules 176 are also prominent sites of NCX expression, as also shown in Fig. 1D, 177 a feature that is relevant to functional NHE1-NBC/NCX coupling, as 178 discussed later (Section 4). 179

Further immunofluorescent studies have established that NBCs colocalise with LTCCs in the t-tubules, while NHE1 proteins co-localise with Cx43 protein, the subunit of the main gap-junctional channel in ventricular myocardium [26], expressed prominently at intercalated discs. NBC will thus have privileged access to pH_i-control in the vicinity of the couplons. These are t-tubular sites of excitation-contraction coupling in the ventricular myocyte, where surface membrane LTCCs are 186 Download English Version:

https://daneshyari.com/en/article/8475140

Download Persian Version:

https://daneshyari.com/article/8475140

Daneshyari.com