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a  b  s  t  r  a  c  t

This paper  mainly  addresses  the  position  and  attitude  tracking  control  for a  small  quadrotor  UAV  via
discrete-time  sliding  mode  control  (DSMC).  Firstly,  the  linear  extrapolation  method  is  used  to  transform
the  continuous-time  system  into  discrete-time  system.  Based  on  the  discrete-time  system,  the  discrete-
time  flight  controllers  are  designed  to  perform  position  and  attitude  tracking  control  of  the  quadrotor
UAV.  In  addition,  new  conditions  are  given  ensuring  the discrete-time  system  is asymptotically  stable.
Lastly,  based  on  the  kinematic  and  dynamic  model  of  the quadrotor  UAV,  extensive  simulations  are
performed  to  illustrate  that  the  proposed  control  method  has  a  good  performance  in  terms  of  stabilization
and  tracking  control.
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1. Introduction

In the past few years, the interest in Unmanned Aerial Vehi-
cle (UAV), has been increasing rapidly. Multipurpose, the vehicles
have been gaining remarkable capabilities, what’s more, they are
of importance due to their abilities to replace manned aircraft in
mang routine and dangerous missions, and to reduce costs of many
aerial operations [1–4], where the several types of missions include
that search and rescue missions, wild fire surveillance, power plant
inspection, agriculture services, mapping and photographing, and
law enforcement.

For the sake of performing autonomous flight, several advanced
control methods have been proposed for the quadrotor, such as
proportional–integral–differential (PID) control [5], backstepping
[6], and evolutive sliding mode control [2,7,8] etc. However, in most
of the existing literature of the quadrotor UAV, research efforts on
the control methods, have focused primarily in the continuous-
time systems and not in the discrete-time systems. In this paper,
in order to further investigate the effective discrete-time control
method, the discrete-time sliding mode control (DSMC) based on
the second order sliding mode technique is studied for performing
position and attitude tracking control of the quadrotor UAV.

Recently, the DSMC has been gaining an increasing interest, and
many results have been published in [9–13]. In particular, the DSMC
has been addressed by resorting to the output feedback approach
[9,10]. The DSMC has been investigated by taking the time-varying
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delays [11]. A reaching condition has been shown to be convenient
and effective in [12] to deal with the DSMC for a class of discrete-
time systems. In [13], a discrete-time sliding mode controller was
proposed for higher order plus delay time processes.

In this paper, the main contribution is to develop a discrete-
time sliding mode control approach, which can globally stabilize
all states, including those which are indirectly actuated through
the nonlinear coupling, for a small quadrotor UAV. Motivated by
coupled SMC  [8], the DSMC along with a nominal linear coupled
sliding manifold designed by incorporating multiple independent
states into a sliding manifold is developed for performing the posi-
tion and attitude tracking control of the quadrotor UAV. The linear
coupled sliding manifold is constructed by combining the position
and velocity tracking errors of two degrees of freedom in a linear
form [8,14,15]. The discrete-time flight controllers are derived via
Lyapunov stability theorem, new conditions are given ensuring the
discrete-time system is asymptotically stable.

The reminder of this paper is as follows. In Section 2, a kinematic
and dynamic model for a small quadrotor UAV is given. In Section
3, the discrete-time flight controllers are designed. The simulations
and conclusions are given in Sections 4 and 5, respectively.

2. Quadrotor dynamic model

The kinematic and dynamic model of the quadrotor is utilized
in this paper, meanwhile, it is assumed that the configuration
structure is rigid and symmetrical, the center of gravity and the
body-frame origin coincide, the propellers are rigid and the thrust
and drag forces are proportional to the square of the speed of the
propeller. The body-frame and the earth-frame are shown in Fig. 1.
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Fig. 1. Quadrotor UAV.

In order to make the controllers designed conveniently, let
[�̇, �̇,  ̇]  = [p, q, r]. According to these papers [7,8] the second
order nonlinear dynamic model is described by the following equa-
tions as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where the vector [x, y, z]′ denotes the position of the center of the
gravity of the aircraft in the earth-frame while the vector [p, q, r]′

represents its angular velocity in the body-frame. m denotes the
total mass. g denotes the acceleration of gravity. l represents the
distance from the center of each rotor to the center of grav-
ity. Ix, Iy and Iz denote the moments of inertia among x, y and
z directions, respectively. �, � and   denote the roll, pitch and
yaw Euler angles, respectively. Ki (i = 1, 2, 3, 4, 5, 6) are drag
coefficients and are positive constants. Jr denotes the moment of
inertia. ˝r = ˝1 − ˝2 + ˝3 − ˝4, ˝i (i = 1, 2, 3, 4) denote the ith
propeller speed, ˝r represents the overall speed of propellers.⎡
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where b is the thrust coefficients, d is the drag coefficient.

3. Flight controller design

This section mainly introduce the discrete-time sliding mode
control (DSMC) method that is used to design the discrete-time
flight controllers of the quadrotor UAV. In order to make the con-
trollers designed conveniently, the kinematic and dynamic model
of the quadrotor UAV are divided into two subsystems: a fully actu-
ated subsystem and an underactuated subsystem, where the fully
actuated subsystem involves the second order dynamic equations z̈

and  ̈, and the underactuated subsystem involves the second order
dynamic equations ẍ and �̈, ÿ and �̈, respectively. Before designing
the discrete-time flight controllers, the continuous-time system of
the quadrotor (1) is needed to transform into discrete-time system
via the linear extrapolation method. The transformed form is given
by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where �t  is the sampling time.

3.1. Controller design for fully actuated subsystem

According to the symmetry of a rigid-body quadrotor, Ix = Iy can
be obtained. The controllers for the actuated subsystem (zk+2,  k+2)
are designed by using DSMC. The objective is to ensure that the
states zk and  k converge to their desired equilibrium points zd

k

and  d
k

at the instant k, respectively, while assuming zd
k

and  d
k

are
time invariants.

The sliding manifolds are defined at the instant k
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where the coefficients az and a are positive constants; and the
change rates of zd
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The updated sliding manifolds are derived
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The two  exponential reaching laws are given by
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where �i (i = 1, 2) > 0.
Substituting (4) and (6) for (8), and substituting (5) and (7) for

(9), while invoking (3), the discrete-time controllers at the instant
k are obtained
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