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a  b  s  t  r  a  c  t

When  a dielectric  circular  cylinder  of  specific  radius  is illuminated  by  a  plane  wave,  a  whispering  gallery
mode  (WGM)  is  generated  in  the  cylinder.  This  resonance  radius  of  the  cylinder  can  be  derived  numeri-
cally  on  the  assumption  of the  maximal  value  of  the coefficient  in a Bessel  series  expansion  of  the E-field
amplitude  of  the  TE-wave.  Equations  composed  of cylindrical  functions  are  obtained,  allowing  the cylin-
der’s  resonance  radius  to be  calculated  approximately.  For  instance,  based  on  the  equations,  one  can
determine  eight  initial  significant  digits  of  the  cylinder  resonance  radius  for  a WGM  with  mode  number
26  to be generated.  In a cylinder  with  refractive  index  1.59 and  resonance  radius  3.469239  � (� is wave-
length),  a WGM  with  mode  number  30  is excited.  Such  a  cylinder  can  generate  an  external  focal  spot  of
size  0.15 �, with  its  maximal  intensity  being  1500  times  larger  than  that  of incident  light.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Recent years have seen an extensive study of subwavelength
focusing of laser light by means of microparticles, including
microbeads and microtubes with their radii being comparable
with the wavelength of light [1–5]. For instance, focusing with the
aid of multilayer microbeads [1], spherical microparticles [2], and
two-layered microspheres [3,4] has been numerically studied. The
minimum attained focal spot size at full-width of half-maximum
intensity has been found to be FWHM = 0.4 � [2], with the maxi-
mum depth of focus reported being DOF = 20 � [3], DOF = 22 � [4]
and DOF = 108 � [5]. Microcylinder-aided focusing has also been
reported, including an elliptic [6] and multi-layered cylinder [7].
The minimal focal spot size obtained has been FWHM = 0.46 �
[7]. Resonance focusing of light by means of microspheres was
modeled in papers [8,9]. Using a dielectric microsphere in com-
bination with a metal bead, the resonance focusing of light into
a spot of size FWHM = 0.25 � was achieved [8], while a dielectric
microsphere produced a resonance focal spot of size FWHM = 0.40
� [9]. Resonance focusing of a laser TE-wave by means of a
polyester microcylinder with refractive index n = 1.59 was stud-
ied analytically using a Bessel function series [10]. For a WGM
with mode number N = 18, an external focus of size FWHM = 0.22 �
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was obtained. In paper [11] it was numerically shown that within
several picoseconds while a light pulse travels through a dielec-
tric cylinder with resonance radius, a whispering gallery mode
(WGM)  is excited, with energy accumulated in the cylinder. Putting
it more precisely, two near-surface WGMs  propagate in opposite
directions, with one traveling clockwise and the other – anticlock-
wise and forming a standing WGM.  Once the ps-pulse has passed
through the cylinder, the accumulated WGM’s energy decreases
with time, with the mode leaking from the cylinder. WGMs  in the
microresonators have been amply covered in numerous publica-
tions (see a review in paper [12]). Rayleigh was  the first to propose
the WGMs  in 1910 [13]. To-date publications handle WGMs  in the
spherical [14,15], spheroid [16], toroidal [17], disk [18], and other
microresonators. Considering that in volume microresonators the
Q (or quality) factor (Q = �/��), used to characterize the resonance
quality, can experimentally reach an extraordinary value of 109

[15], these have been studied most extensively. In an ideal situ-
ation of energy losses being only due to radiation, the Q factor can
be as high as 1057 [12,15] in a dielectric microsphere of diameter
100 �m.  As far as cylindrical microresonators are concerned, these
have a lower Q factor, and, thus, publications dealing with WGM  in
cylindrical microcylinders are scarce. For example, spiral WGMs  in
a conventional single-mode optical fiber were discussed in [19].

In this work, we study WGMs  that are excited when a cir-
cular microcylinder of specific radius is illuminated by a plane
monochromatic wave. The resonance radius of interest can be
derived numerically on the assumption of the maximal modulus
of the coefficient of a Bessel series expansion of the electric field
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strength amplitude of a TE-wave. The equations in cylindrical coor-
dinates derived enable us to obtain an approximate estimate of the
microcylinder’s resonance radius. Several simple approximate rela-
tions to calculate the microcylinder’s resonance radius with correct
two-to-three initial significant digits are given. Resonance radii
for WGMs  with mode numbers varying from 3 to 30 are derived.
Relations for the maximum on-axis intensity just above cylinder
surface, width and depth of focus as functions of the WGM  number
or a microcylinder’s resonance radius are estimated.

2. Calculating the microcylinder resonance radius by
deriving the maximum coefficient of the field expansion
into cylindrical functions

An analytic solution of a plane-wave diffraction problem by an
infinite dielectric circular cylinder was proposed in the book [20].
The solution to the Helmholtz equation for the E-field strength
of a E-wave in the microcylinder has been found by separation
of variables in polar coordinates (r, �) is given by a Bessel series
expansion:

Ey(r, �) =
∑

j

ijbjJj(knr)eij�, (1)

where k is the wavenumber of incident light, n is the refractive
index of the microcylinder, and the coefficient bj is defined as

bj =
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j
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where z = kR,  R is the cylinder radius, Jm(x), H(1)
m = Jm(x) + iYm(x)

are the Bessel and Hankel functions, and Ym(x) is the Neumann
function. Primes at the right upper corners of the functions mean
differentiation of the functions with respect to their arguments. The
maximal absolute value of coefficient (2) can be derived by sim-
plifying the relation based on well-known property of cylindrical
functions given by a Wronskian:
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(3)

Mathematically speaking, the zero-valued denominator in Eq. (2)
or Eq. (3) leads to the zero-valued determinant of a homogeneous
linear system of second-order algebraic equations for deriving the
coefficient bm in Eq. (1), given that light is not incident on the
cylinder.

Fig. 1 depicts the modulus of coefficient (3) at m = 18 as a func-
tion of the cylinder’s radius R in terms of wavelengths: Fig. 1(a)
shows the radius in the range 0 ≤ R ≤ 10� and Fig. 1(b) depicts a
magnified fragment of the curve in the range 2.1� ≤ R ≤ 2.3�.

From Fig. 1(b) the coefficient is seen to reach its maximum value
of 12 at R18 = 2.174987 �, whereas the maximum’s FWHM width
is �R  = 0.003 �. Thus, given the same wavelength, which a change
in radius as small as 0.14% the resonance will not occur any more,
which is equivalent to the absence of WGM  [11].

Fig. 2 depicts a different |bm| in Eq. (3) at m = 21 as a function of
cylinder’s radius R in terms of wavelengths for two  different refrac-
tive indices of the cylinder: silica, n = 1.46 (Fig. 2(a)) and polyester
n = 1.59 (Fig. 2(b)). It is the first and highest maximum that cor-
responds to the microcylinder’s resonance radius: R21 = 2.707071
� (Fig. 2(a)) and R21 = 2.502264 � (Fig. 2(b)). Note that for all first
maxima of the coefficient |bm| there fulfills the following relation:

ym,1

2�n
<

Rm

�
<

jm,1

2�n
, Ym(ym,1) = 0, Jm(jm,1) = 0, (4)
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Fig. 1. R-dependence of |bm| at m = 18, 0� ≤ R ≤ 10� (a) and 2.1� ≤ R ≤ 2.3� (b).
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Fig. 2. Coefficient (4) vs. radius of a dielectric cylinder with the refractive indices
(a)  1.46 (silica) and 1.59 (polyester).

where Rm is the first maximum’s radius for the m-th mode, ym,1
is the first zero of the m-th order Bessel (Neumann) function of
the second kind, and j1,m is the first zero of the m-th order Bessel
function of first kind. In Fig. 2(a) and (b) the boundary values of
inequality (4) are marked with vertical dashed lines.

Fig. 2 also suggests that as the microcylinder’s refractive index
increases, the modulus of the coefficient also increases, while the
resonance peak becomes narrower. Considering that in Figs. 1 and 2,



Download English Version:

https://daneshyari.com/en/article/847538

Download Persian Version:

https://daneshyari.com/article/847538

Daneshyari.com

https://daneshyari.com/en/article/847538
https://daneshyari.com/article/847538
https://daneshyari.com

