
Optik 127 (2016) 3943–3949

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

Enhanced  dynamic  error  spectrum  for  estimation  performance
evaluation  in  target  tracking

Wei-Shi  Penga,b,∗,  Yang-Wang  Fanga,  Dong  Chaia

a School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi’an, Shaanxi 710038, China
b School of Equipment Engineering, Armed Police Force Engineering University, Xi’an, Shaanxi 710086, China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 27 November 2015
Accepted 12 January 2016

Keywords:
Performance evaluation
Estimation
Error spectrum
Dynamic error spectrum
Target tracking

a  b  s  t  r  a  c  t

The  error  spectrum  is a comprehensive  metric  for evaluation  of  estimation  performance,  which  is an
aggregation  of many  incomprehensive  measures.  However,  for dynamic  systems,  error  spectrum  is dif-
ficult to  analyze  an  estimator’s  performance  since  it is a three-dimension  graphics  for  the  whole  time
horizon.  Accordingly,  dynamic  error  spectrum  was  proposed  to relieve  error  spectrum  to dynamic  sys-
tems.  The  key of dynamic  error  spectrum  is  combining  error  spectrum  into  one  point  at  a time  instant,
which  unfortunately  suffers  from  information  loss.  To  improve  this, a new  metric  called  enhanced
dynamic  error  spectrum  is  proposed  in this  paper.  Then,  both  the additive  form  and  the  multiplicative
form  of  enhanced  dynamic  error  spectrum  are given  under  different  application  backgrounds.  Finally,  the
concrete  application  of  the  metrics  and  qualities  of  the  above  form  are  illustrated  by  numerical  exam-
ples.  The  simulation  shows  that  more  important  information  are  considered  by enhanced  dynamic  error
spectrum  and  the  proposed  measure  can  also  be applied  easily  to dynamic  systems.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In recent years, estimation performance evaluation (EPE) has
received a great amount of attention due to their increasing use in
estimation (see, e.g., [1–7,11,12]), fusion (see, e.g., [13,14]) and tar-
get tracking (see, e.g., [15–18]). In EPE, the root mean square error
(RMSE) is one of the most popular incomprehensive performance
measures since it is the most natural finite-sample approximation
of the standard deviation. However, RMSE is easily dominated
by large error terms. For instance, if all 100 terms of estimation
error are around 1 except for one term of 1000, then the RMSE is
approximate to 100. Clearly, the RMSE is unreasonable because
it ignores small errors even if they are in an overwhelmingly
large number [1,2]. So, the average Euclidean error (AEE) was
suggested to replace the RMSE in many applications [1]. Although
AEE has many advantages, it is still affected by extreme values (in
the above example, AEE is approximate to 10). Therefore, many
incomprehensive performance measures were elaborated in [1]
such as the harmonic average error (HAE), geometric average error
(GAE), median error and error mode. Furthermore, a robust metric
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called iterative mid-range error (IMRE) was  given in [6] since these
metrics are not robust.

Unfortunately, all of the above-listed metrics can reflect only
one aspect of the estimator performance. Thus, three comprehen-
sive performance measures—the error spectrum (ES), desirability
level, and relative concentration and deviation measures were pro-
posed in [2,4,5]. Among these metrics, the ES can reveal much
information about the estimation performance because it is an
aggregation of many incomprehensive metrics.

However, the ES has some limitations and drawbacks. On one
hand, it is not easy to calculate without the error distribution,
although [2] along with its further discussion [8] focused the com-
putation of ES. Therefore, calculation is still a problem for the ES.
To overcome this problem, two approximation algorithms was pro-
posed in [9] based on the Gaussian mixture and power means error.
On the other hand, the ES is presented in a form being suitable for
parameter estimation directly; that is, for dynamic systems, it is
hard to analyze the estimator’s performance because the ES is a
three-dimension (3D) graphics over the total time span.

For this reason, the dynamic error spectrum (DES) is presented
in [10,11], which is combining the ES into one point at a time
instant so as to transform the three dimensional graphics into two
dimensional graphics. Besides, the DES has been used to analyze
the performance of the IMM  algorithm [11]. In fact, the DES is
the average height of the ES. Obviously, the advantage is that the
estimation performance can be visually reflected in the dynamic
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system, meanwhile the disadvantage is that much important infor-
mation will be lost when utilizing the DES. Furthermore, the DES
provides a ruler only to measure how large the estimation error
is. Recall that the least-squares (LS) estimation and minimum
mean square error (MMSE) estimation differ from the maximum
likelihood (ML) estimation and maximum a posteriori (MAP) esti-
mation in their underlying ideas. The former seeks an estimator
that has the smallest error, while the latter uses the “most fre-
quently occurred” value of the estimatee as the estimator [1].
Although the ML  and MAP  estimators may  have a larger average
error, they may  have a higher probability of being close to the
estimatee. This has important implications while choosing an esti-
mation method for a particular application. Take the estimation
for interception/weapon control as an example, two  estimators are
considered and their average error equals to zero. Estimator 1 deliv-
ers most estimates within the kill zone (such that the target can be
destroyed) but has some really bad misses; estimator 2 misses the
kill zone quite often but has few really bad misses and thus has a
zero average error. Obviously, it does the first estimator that should
be chosen for this application due to the more concentration of the
estimation errors. Moreover, the application of the DES to evaluate
estimators for such applications as weapon control and intercep-
tion is not so appropriate. Thus, a worthwhile problem is how to
evaluate an estimator considering both the estimation error and
probability in dynamic systems.

In this paper, the main contribution is that a new metric called
enhanced dynamic error spectrum (EDES), is proposed to evaluate
an estimator in dynamic systems. And also two forms of EDES are
presented as well as their pros and cons, the first form is the additive
form of enhanced dynamic error spectrum (A-EDES), which is a
natural way if some prior knowledge about the estimator can be
obtained; the second form is the multiplicative form of enhanced
dynamic error spectrum (M-EDES), which is given without the prior
knowledge. Finally, numerical examples are provided to illustrate
the utility and effectiveness of the EDES metrics.

This paper is organized as follows. ES and DES are summarized
in Section 2, the EDES and its two forms are presented in Section 3
to evaluate an estimator. Numerical examples are provided in Sec-
tion 4 to illustrate the utility and effectiveness of the EDES metric.
Section 5 concludes this paper.

2. Summary of error spectrum and dynamic error spectrum

2.1. Error spectrum

According to [2,23], let the (possibly vector-valued) estima-
tion error �̃ of a (point) estimator �̂ be �̃ = � − �̂ where � is the
estimand (i.e., the quantity to be estimated). We  denote e = ||̃�||
or e = ||̃�||/||�|| as the absolute or relative estimation error norm,
where || · || can be 1-norm or 2-norm. Then, for r ∈ [− ∞ , + ∞], at a
time instant t, the ES is defined as

S(r, t) = [E(e(t)r)]
1/r =

[∫
e(t)rdF(e(t))

]1/r

=

⎧⎪⎨⎪⎩
[∫

e(t)r f (e(t))de

]1/r

if e(t) is continuous[∑
pie(t)i

r
]1/r

if e(t) is discrete

(1)

where F(e(t)), f(e(t)), and pi are the cumulative distribution func-
tion (CDF), probability density function (PDF), and probability mass
function (PMF), respectively.

From (1), for a fixed time t0 it is clear that the ES includes several
incomprehensive metrics as special cases when r is set to some
specific values:

(a) S(2, t0) = (E[e(t0)2])
1/2

. Thus, for a discrete ei(t0), S(2,
t0) = RMSE.

(b) S(0, t0) , lim
r→0

S(r, t0) = exp(E[ln e(t0)]). Thus, for a discrete

ei(t0), S(0, t0) , GAE.
(c) S(1, t0) = E[e(t0)]. Thus, for a discrete ei(t0), S(1, t0) = AEE.
(d) S(−1, t0) = 1

E[1/e(t0)] . Thus, for a discrete ei(t0), S(− 1, t0) = HAE.

In view of this, the notation r used in this paper is a real number
that satisfies r ∈ [−1, 2].

Certainly, ES is a curve for the state estimator of a dynamic sys-
tem at any time instant. So it is a 3D figure over the total time span,
which leads to the difficulty of EPE for dynamic system. Fortunately,
DES has been proposed to solve this problem.

2.2. Dynamic error spectrum

In [10,11], if some prior knowledge about the weights {wi}n
i=1

corresponding to each given ri, ri ∈ {ri}n
i=1, can be obtained, where∑n

i=1wi = 1, the weighted form of the DES, at a time t, can be simply
summarized as

DES (w, r, t) =
n∑

i=1

S(ri, t)wi (2)

Since the weights are difficult to obtain, another form is given
by using average height of the ES, which is defined as

DES (r, t) = 1
rn − r1

∫ rn

r1

S(r, t)dr ≈ 1
n

n∑
i=1

S(ri, t) (3)

Actually, the above form is dominated by large terms. Thus based
on the balanced property of GAE, DES can be rewritten as

DES (r, t) = exp
(

1
rn − r1

)∫ rn

r1

ln S(r, t)dr ≈ exp

[
1
n

n∑
i=1

ln S(ri, t)

]
(4)

Clearly, we can see that the DES is compressing the r-axis of
the error spectrum curve to one point at a time instant. So, much
information of the r-axis will be lost as using the DES. From another
perspective, the key of this metric is to use the average height of
the ES curve, as shown in Example 1.

Example 1. Assume that we  have two  estimators �̃(t)1 and �̃(t)2,
at an interval of time t ∈ [0, 30], their estimation errors are follows
the two distributions, i.e.,

p(�̃(t)1) = 0.5N(−0.8, 0.19) + 0.5N(0.8, 0.19)

p(�̃(t)2) = 0.5N(0, 1.8) + 0.5N(0, 0.8)

where N(�, �2) is a Gaussian distribution with mean � and variance
�2.

Then for each estimator, their ES over the time interval t ∈ [0,
30], PDF curves, DES curves and ES curves (at a time instant t0) are
given in Figs. 1–4, respectively.

As shown in Figs. 1 and 3, it is hard to see which estimator
performs better. Intuitively, substituting ES into the Eq. (3) yields

DES(r, t)1 = DES(r, t)2 = 0.720
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