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a  b  s  t  r  a  c  t

In  this  paper,  the dynamics  of  the  Lorenz  model  of general  circulation  of  the atmosphere  is  investigated.
The  global  exponential  attractive  set and  positively  invariant  set  are  obtained  based  on well-known  Lya-
punov  stability  theory  and  the  function  extremum  theory  for this  low-order  atmospheric  circulation
chaotic  model.  Furthermore,  the  exponential  rate  of  the  trajectories  going  from  the  exterior  of the attrac-
tive  set  to  the interior  of the  attractive  set is  also  obtained.  At  last,  numerical  studies  are  provided  to
illustrate  the  effectiveness  of  the  presented  scheme.
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1. Introduction

Chaos and chaotic systems have been intensively studied in
the last decades. Chaotic systems are dynamical systems described
by nonlinear differential equations and they are strongly sensitive
to initial conditions and the parameters. The well-known Lorenz
system, Rössler system, Chua’s circuit system, Chen system, Lü sys-
tem and other chaotic dynamical systems are served as important
chaotic models for the study of chaos [1–8].

Due to great potential applications in electrical engineering,
information processing and so on, it is important to analyze the
dynamical behaviors and properties of the new chaotic systems.

Ultimate boundedness is one of the fundamental concepts of
dynamical systems, which plays an important role in investigat-
ing the uniqueness of equilibrium, the asymptotic stability, the
existence of the periodic solution, estimating the Lyapunov dimen-
sion of chaotic attractors, estimating the Hausdorff dimension of
the chaotic attractor, chaos control, chaos synchronization and so
on. Ultimate boundedness is also very important for engineering
applications [9,10], since it is very difficult to predict the exist-
ence of hidden attractors and they can lead to crashes. Due to
the significance of scientific and engineering background of the
famous Lorenz system, Leonov first studied the global bounded-
ness of the Lorenz system and obtained many important results
in [2,3]. Motivated by Leonov et al., the bounds of other chaotic
systems, including the complex Lorenz chaotic system [11], the
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synchronous motor system [12], the Lü system [13], the brushless
DC motor system [14], the monetary chaotic system [15] and the
family of Lorenz-like systems [16] were also studied. Technically,
this is also a very difficult task [11–16]. Furthermore, there is no
unified method for construsting the Lyapunov functions to study
the bounds of chaotic systems.

The novelty of this article is that not only do we get the ultimate
bounds of the low-order atmospheric circulation chaotic model in
[17–20], but we also get the trajectories of the system going from
the exterior of the trapping set to the interior of the trapping set.

The rest of this study is organized as follows, the mathemati-
cal model is given in Section 2. In Section 3, we  choose the proper
Lyapunov function to prove the existence of positively invariant
sets and global exponential attractive sets of the low-order atmo-
spheric circulation model [17–20]. Some numerical simulations are
also given in Section 3. Section 4 gives conclusions.

2. Mathematical model

The atmospheric component of the coupled low-order model
is composed of the following three ordinary differential equations
[17–20]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= −y2 − z2 − ax + aF, (1a)

dy

dt
= xy − bxz − y + G, (1b)

dz

dt
= xz + bxy − z, (1c)

(1)
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Fig. 1. Chaotic attractor of system (1) in the phase space.

where x is the zonal wind, y and z are the amplitudes of cosine and
sine phases of large scale eddies, respectively. Interactions between
the mean flow and eddies are represented by the amplification of
eddies at the expense of the zonal flow intensity (first terms on
the right-hand side of (1)), displacement of the eddies by the zonal
flow (second terms in (1b) and (1c)), as well as mechanical damp-
ing (second term in (1a) and third terms in (1b) and (1c)). F and G
terms represent diabatic heating contrasts between the low- and
high-latitude ocean (F term) and seasonally varying zonal heating
zonal difference between the land and ocean in the mid-latitudes
(G term). Formulations for F and G are detailed later. And a, b, G, F
are positive parameters of system (1). When a =

(
1/4

)
, b = 4, G =

1, F = 8, the system (1) can generate a chaotic attractor, as shown
in Figs. 1 and 2 (also see [17–20]).

3. Main results

The local bifurcation of the equilibrium point, periodic solutions,
homoclinic orbits, heteroclinic orbits, limit cycles, attractors and
chaotic behaviors are studied in the papers [17–20]. But, the global
exponential attractive sets of the low-order atmospheric circula-
tion model (1) have not been studied yet.

In this section, we will discuss the positively invariant sets and
global exponential attractive sets of system (1) for ∀a > 0, b > 0, G > 0,
F > 0. We  have the following theorem.

Theorem 1. There exists a positive number L > 0, such that the
following set

 ̆ =
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ L

}
(2)

is the ultimate bound and positively invariant set of system (1).

Proof. Define the following Lyapunov function

V (x, y, z) = x2 + y2 + z2, (3)

And we can get

dV (x, y, z)
dt

∣∣∣
(1)

= 2
(

x
dx

dt
+ y

dy

dt
+ z

dz

dt

)
,

= 2x
(
−y2 − z2 − ax + aF

)
+ 2y (xy − bxz − y + G)

+2z(xz + bxy − z),

= −2ax2 − 2y2 − 2z2 + 2aFx + 2Gy,

Obviously, the surface � :

� =
{

(x, y, z)
∣∣ (

x −
(

F/2
))2((

aF2 + G2
)

/4a
) +

(
y −

(
G/2

))2((
aF2 + G2

)
/4

) + z2((
aF2 + G2

)
/4

) = 1

}
, (4)

-1 -0 .5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y
-1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

z

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

z

Fig. 2. Chaotic attractor of system (1) in x–y, x–z, and y–z planes.

is an ellipsoid in R3 for ∀a > 0, b > 0, G > 0, F > 0. Since the
V (x, y, z) is a continuous function and � is a bounded
closed set, then function (3) can reach its maximum value
max  V (x, y, z)

(x,y,z) ∈ �

= L on the surface � in (4). Obviously,{
(x, y, z)

∣∣V (x, y, z) ≤ max  V (x, y, z)
(x,y,z) ∈ �

= L, (x, y, z) ∈ �

}
contains solutions of system (1). It is obvious that (2) is the
ultimate bound and positively invariant set for system (1).

This completes the proof.
Theorem 1 claims that the trajectories of system (1) are ultimate

boundedness. But it does not gives the rate of the trajectories of
system (1) going from the exterior of the trapping set to the interior
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