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a  b  s  t  r  a  c  t

In  order  to  improve  the  depth  measurement  accuracy,  an  improved  phase  to  absolute  depth  transfor-
mation  method  by  considering  camera  and projector  lens  distortion  is presented  in  this  paper.  What
is  more,  generally  the  depth  measurement  range is very  small  for fringe  projection  three-dimensional
measurement.  In  order  to  extend  the  depth-of-field  to  a large  range,  a cubic  curve fitting  depth  error
compensation  method  by  considering  camera  and projector  lens  defocus  is proposed  and  verified  in  this
paper.  The  experimental  results  demonstrate  the  effectiveness  and  accuracy  of  the  proposed  methods.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Phase-shifting digital fringe projection technique has been
playing a prominent role in 3D shape measurement for its high res-
olution, high speed, and non-contact measurement. The projector
projects light patterns with sinusoidally changing intensity onto an
object and the camera captures the deformed pattern images. The
3D information is uniquely extracted from the absolute phase map
which is generated by the captured deformed fringe images [1,2].

The current literature provides a few phase-to-depth trans-
formation methods [3–11]. Jesus et al. [3] uses a phase-to-depth
calibration-based transformation method [4] based on polynomial
fitting. However, this phase-to-depth calibration method requires
a high accurate translation stage to obtain a series of absolute
phases and the associated depths mapping relationship at each
pixel in advance. Lei Huang et al. [5] uses the least-squares method
[6,7] to determine the phase to depth relationship. The drawback
of this technique is that several standard gauge blocks with known
heights are needed. What is more, the depth measurement range
is limited by the calibration range of the translation stage and
the standard gauge blocks, respectively for above two techniques.
There is another phase-to-depth transformation method which can
avoid the disadvantages mentioned above that is called geometrical
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modeling method. It establishes the mathematical model to obtain
the 3D coordinates by taking fully advantage of triangular relation-
ship of the fringe projection system. It does not need precise control
and alignment to calibration plane, and it also does not require
additional standard gauge blocks to do calibration. So it is widely
studied by researchers for three-dimensional measurement [8–13].

For fringe projection with geometrical modeling technique, due
to the complexity of the practical projection system, the geomet-
rical models are always not very accurate with some assumptions,
which results in the depth measurement error. Therefore, much
effort has been devoted to improve the depth measurement accu-
racy by considering camera lens distortion [5,14]. However, for
fringe projection measuring system, besides camera lens distortion
which brings the measurement error, projector lens distortion will
also introduce the measurement error. So in this paper, both cam-
era lens distortion and projector lens distortion are considered for
the measuring system on improving the measurement accuracy.

What is more, in theory, the three-dimensional measurement
can be explored to a large scene reconstruction with geometrical
modeling fringe projection technique. However, in fact, the depth
measurement range is generally very small since the object must
be properly placed before the fringe projection system so that to
get good quality sinusoidal fringe pattern for high measurement
accuracy. Few literatures have explored its potential on 3D object
reconstruction in a large scene. In this paper, we explore the recon-
struction to a large range by applying cubic curve fitting depth error
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compensation method. This opens enormous potential in a wide
range of application areas.

This paper is organized in the following way: In Section 2 we
explain the proposed transformation method on 2D phase map  to
absolute 3D coordinates. Section 3 describes how we improve the
depth measurement accuracy by considering camera and projector
distortion. Section 4 introduces how to extend the depth-of-field of
the fringe projection measurement to a large range. Experimental
results are given to demonstrate the effectiveness of the proposed
methods. Finally conclusions are given in Section 5.

2. Measurement principle

2.1. Fringe projection technique

In phase-shifted fringe projection technique, three phase-
shifted sinusoidal fringe patterns are projected onto the object
surface with phase shift of 0, 2�/3, and −2�/3 within one fringe
period in this study. The intensity distributions with phase shift
can be written as the following equations.⎧⎪⎨
⎪⎩

I1(x, y) = I′(x, y) + I
′′
(x, y) cos[ϕ(x, y) − 2�/3]

I2(x, y) = I′(x, y) + I
′′
(x, y) cos[ϕ(x, y)]

I3(x, y) = I′(x, y) + I
′′
(x, y) cos[ϕ(x, y) + 2�/3]

, (1)

where I′(x, y) is the average intensity, I′′(x, y) is the intensity modula-
tion, ϕ(x, y) is the phase to be solved. By solving the above equations
simultaneously, the phase at each point in the image plane can be
obtained as follows.

ϕ(x, y) = tan−1

[ √
3(I1 − I3)

2I2 − I1 − I3

]
(2)

The obtained phase is in a relative value between −� and +�. Phase
unwrapping algorithm is carried out to remove the phase ambigu-
ities and get the absolute phase.

2.2. Derivation of the phase map to depth map

Fig. 1 illustrates a typical setup of fringe projection three-
dimensional measuring system and the geometrical model on
how the 3D coordinates are derived from the phase map[15]. In
Fig. 1, the camera and the projector are all described by a pinhole
model. The camera imaging plane and the projection plane are arbi-
trarily arranged and the imaginary reference plane OXY is set up
which is parallel to the projection plane. OpXpYpZp denotes the pro-
jector coordinate system. OcXcYcZc denotes the camera coordinate
system. OXYZ denotes the imagined reference plane coordinate
system. P represents an arbitrary point on the object with coor-
dinates (x, y, z), (xc, yc, zc), (xp, yp, zp) in the imaginary reference

Fig. 1. Schematic illustration of a generalized phase-shifting fringe projection sys-
tem and how the 3D coordinates are derived from the phase map.

coordinate system, camera coordinate system and projector coor-
dinate system, respectively. C indicates the imaging point of point
P. D indicates the fringe point which projects at point P in space.
And A and B denote the lens centers of the camera and the projec-
tor, respectively. Line EF is one of the sinusoidal fringes which is
parallel to xp – axis. Line BG is vertical to Line EF . Line PP ′ is parallel
to Z-axis and crosses the imaginary reference plane at point P′. PP1
is the extension line of ray DP and crosses the imaginary reference
plane at point P1. P ′P ′

0 and P1P ′
1 are parallel to X-axis and cross the

Y-axis at point P ′
0 and P ′

1, respectively.
Based on a projective model, the relationship between the point

P and C can be described as

s
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⎟⎠ , (3)

where s is an arbitrary scale factor. In which (uc, vc) is the captured
pixel coordinate in image plane. Ac is the camera intrinsic parame-
ter matrix. Likewise, Ap is the projector intrinsic parameter matrix.
They are expressed as:

Ac =

⎡
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f c
x 0 uc

0

0 f c
y vc

0

0 0 1

⎤
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0

0 f p
y vp

0

0 0 1

⎤
⎥⎦ .

The transformation from camera coordinate system to projector
coordinate system is written as,⎛
⎜⎝
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yp

zp

⎞
⎟⎠ = R−1

⎡
⎢⎣

⎛
⎜⎝
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⎟⎠ − T

⎤
⎥⎦ , (4)

where R and T are the rotation and translation matrixes from pro-
jector coordinate system to camera coordinate system. They are
expressed as:

R =

⎡
⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎦ , T =

⎡
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tx

ty

tz

⎤
⎥⎦ ,

From Ref. [15], there exists the relationship,

−zp + 2�ypf p

(ϕ − ϕ0)�0
= 0 . (5)

Connecting Eqs. (3)–(5), the mathematical description on phase
to absolute depth transformation is,

zc = K(r−1
21 tx + r−1

22 ty + r−1
23 tz) − (r−1

31 tx + r−1
32 ty + r−1

33 tz)

K(r−1
21 D1 + r−1

22 D2 + r−1
23 ) − (D1r−1

31 + D2r−1
32 + r−1

33 )
, (6)

where K = 2�f p

(ϕ−ϕ0)�0
, D1 = uc−uc

0
f c
x

, and D2 = vc−vc
0

f c
y

.

Furthermore, the coordinates (xc, yc) at the given (uc, vc) are
obtained by calculated depth zc as follows,

xc = D1zc, (7)

yc = D2zc, (8)

By solving Eqs. (6)–(8), (x, y, z) coordinates for each point of the
detected object in space are obtained. (uc

0, vc
0) is principal point of

the camera plane. f c
x and f c

y are the scale factors in the image xc and
yc axes. (up

0, vp
0) is principal point of the projector plane. f p

x and f p
y

are the scale factors in the DMD  xp and yp axes.
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