

Contents lists available at ScienceDirect

Molecular and Cellular Endocrinology

journal homepage: www.elsevier.com/locate/mce

Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease

Laura C. Hernández-Ramírez, Giampaolo Trivellin, Constantine A. Stratakis*

Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA

ARTICLE INFO

Article history:
Received 26 June 2017
Received in revised form
11 August 2017
Accepted 14 August 2017
Available online 16 August 2017

Keywords: cAMP PKA Pituitary gland Second messenger Somatotropinoma Pituitary adenoma

ABSTRACT

The cyclic 3′,5′-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy.

© 2017 Published by Elsevier Ireland Ltd.

Contents

1.	Introd	luction		73
2.	Gener	al roadi	map of the cAMP signaling pathway	73
3.	Physic	ological	role of cAMP in the pituitary gland	76
	3.1.	Somate	otrophs	. 77
	3.2.	Lactoti	ophs	. 77
	3.3.	Cortico	otrophs	. 77
	3.4.	Gonad	otrophs	. 78
	3.5.	Thyrot	rophs	. 78
4.	Abnor	rmal cAl	MP signaling in pituitary adenomas	78
	4.1.	GPCR 1	nutations, altered expression and impaired signaling	. 78
		4.1.1.	Mutations and impaired signaling of D2R	. 78
		4.1.2.	GIPR overexpression	. 78
		4.1.3.	GPR101 gene amplification	. 78
		4.1.4.	Mutations and impaired signaling of SSTRs	. 79
	4.2.	Mutati	ons in G proteins	. 80
		4.2.1.	GNAS mutations	. 80
		4.2.2.	Mutations in other G protein subunits	. 80
	4.3.	Alterat	ions in PKA subunits	. 80
		4.3.1.	Carney complex	
		4.3.2.	Mutations in PKA catalytic subunits	. 81
	4.4.	Mutati	ons and altered expression of PDE isoforms	. 81
	4.5	AIP mi	ntations .	81

E-mail address: stratakc@cc1.nichd.nih.gov (C.A. Stratakis).

^{*} Corresponding author.

5.	Conclusions	. 81
	Declaration of interest	. 82
	Funding	. 82
	References	. 82

Abbreviations			gonadotropin-releasing hormone receptor G protein—coupled receptor
α-GSU	α-glycoprotein subunit	GPCR GRK	GPCR kinase
AC	adenylyl cyclase	GTP	guanosine triphosphate
AHR	aryl hydrocarbon receptor	GTPase	guanidine triphosphatase
AIP	aryl hydrocarbon receptor interacting protein	HCN	hyperpolarization-activated cyclic nucleotide-gated
AKAP	A-kinase anchoring protein		channel
AKT	RAC-α serine/threonine-protein kinase	ICER	inducible cAMP early repressor
ATP	adenosine triphosphate	LOF	loss-of-function
AVP	vasopressin	LOH	loss of heterozygosity
cAMP	cyclic 3',5'-adenosine monophosphate	MAPK1	mitogen-activated protein kinase 1
cGMP	cyclic 3',5'- guanosine monophosphate	MAS	McCune-Albright syndrome
CBP	CREB-binding protein	NFPA	non-functioning pituitary adenoma
CNB	cyclic nucleotide-binding	NO	nitric oxide
CNC	Carney complex	OGTT	oral glucose tolerance test
CNG	cyclic nucleotide-gated channel	PACAP	pituitary adenylyl cyclase-activating peptide
CRE	cAMP response element	PBC	phosphate-binding cassette
CREB	cAMP response element-binding protein	PDE	phosphodiesterase
CRH	corticotrophin-releasing hormone	PI3K	phosphatidylinositol 3-kinase
CRHR	corticotrophin-releasing hormone receptor	PKA	protein kinase A
CRIS	cyclic nucleotide receptor involved in sperm function	PKC	protein kinase C
D2R	D2 receptors	PKG	protein kinase G
EGFR	epidermal growth factor receptor	PLC	phospholipase C
EPAC	exchange protein directly activated by cAMP	POMC	proopiomelanocortin
FD	fibrous dysplasia	POPDC	popeye domain-containing protein
FIPA	familial isolated pituitary adenoma	PP	precocious puberty
FLNA	filamin A	PRL	prolactin
GABA	gamma-amino butyric acid	SIRT1	sirtuin 1
GDP	guanosine diphosphate	SNP	single-nucleotide polymorphism
GH	growth hormone	SS	somatostatin
GHRH	growth hormone-releasing hormone	SSA	somatostatin analog
GHRHR	growth hormone-releasing hormone receptor	SSTR	somatostatin receptor
GIP	glucose-dependent insulinotropic polypeptide	TRH	thyrotropin-releasing hormone
GIPR	glucose-dependent insulinotropic polypeptide	TSH	thyrotropin
	receptor	VIP	vasoactive intestinal polypeptide
GnRH	gonadotropin-releasing hormone		

1. Introduction

The so-called "second messengers" link extracellular stimuli with intracellular responses, and the cyclic 3',5'-adenosine monophosphate (cAMP) was the first of such molecules to be described (Sutherland and Rall, 1958). This signal transducer is an essential mediator of the effects of multiple hormones and neurotransmitters and is conserved among most organisms (Danchin, 1993). Despite being a practically ubiquitous and almost generic intracellular response, cAMP signaling is deftly specific thanks to its temporally, spatially, and functionally regulated compartmentalization, assisted by a complex network of cell- and tissue-specific downstream effectors and regulators. Moreover, the cAMP pathway does not operate independently, but crosstalks with other signaling cascades, allowing the cell to finely-tune its responses by integrating different extracellular signals.

In the pituitary, cAMP has long since been established as a key signaling molecule that controls responsiveness to mitogens and secretagogues, such as hypothalamic hormones, neurotransmitters and other peripheral factors (Peverelli et al., 2014a). In this review, we discuss the most relevant physiological functions of cAMP signaling in the normal pituitary, emphasizing the specificity of the responses among different cell types. We also review the implications of deregulated function of this molecular pathway in the pathogenesis of pituitary disorders and the relevant search for novel therapeutic targets.

2. General roadmap of the cAMP signaling pathway

The cAMP pathway is intimately linked to the function of the seven-transmembrane (also referred as heptahelical) G protein—coupled receptors (GPCRs), as ligand binding to such

Download English Version:

https://daneshyari.com/en/article/8476524

Download Persian Version:

https://daneshyari.com/article/8476524

<u>Daneshyari.com</u>