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a  b  s  t  r  a  c  t

In this  paper,  the author  presented  a two-step  indirect  FDTD  method  which  can  be  used for  processing
magnetically  anisotropic  media,  and  then  derived  the iterative  formula.  According  to the  introduction
of  intermediate  variables,  this  paper  is  divided  into  two  parts  by  the  specific  form  of  frequency-domain
permeability,  and  then  the  complex  frequency-dependent  entries  can be replaced  by  new  variables.  First,
the  author  derived  the  relationship  of intermediate  variables  in  the  frequency  domain,  which  is then
transformed  to the  time  domain,  further  the  author  deduced  iteration  formula  of  magnetic  fields,  so  as  to
solve the  complex  magnetic  constitutive  relations.  By  this,  we  solved  the  electromagnetic  field  problems
in  ferrite  successfully.  As a verification,  using  the  method  the reflection  coefficient  and  transmission
coefficient  of  an  infinite  ferrite  slab were  calculated,  the  numerical  results  show  that  the  method  is
simple  and  practical,  which  is  easy  to implement  and  saves  computing  time.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In recent years, the study of magnetized ferrite is being paid
more and more attention [1,2]. Ferrite is a kind of dispersive
medium material, it manifests anisotropy when external mag-
netic field exist. As dispersive media, the permeability of ferrite
will change with the incident wave frequency, and will be high
in high-frequency band. And ferrite’s electromagnetic properties
varies with size and direction of the field. The unique characteris-
tics of the ferrite make it widely used in the design of microwave
integrated circuits and devices. It is difficult to solve the permeabil-
ity of magnetized ferrite strictly for its anisotropy appeared, then
it would be important that analysis of electromagnetic problems
with numerical methods such as finite-difference time-domain
method (FDTD). Currently the main FDTD methods for dispersive
media are recursive convolution (RC) method [3], Z transform (ZT)
[4], the shift operator (SO) method [5,6], the current density con-
volution (JEC) [7], auxiliary differential equation (ADE) method
[8,9], Runge–Kutta exponential time differencing method (RKETD)
[10,11], exponential time differencing (ETD) [12,13] method and
so on. It is common that these methods are more used in research
of electrical dispersive medium such as plasma than the study of
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magnetic dispersive medium, and not to mention the study of mag-
netic anisotropic medium. For the study of the magnetic anisotropy
medium, it needs to promote the methods above. In 1998, Chen
et al. calculated circulation features of ferrous targets in free space
using FDTD method [14]. In 2007, Yang and others provided an
analysis of anisotropic ferrite ball’s backscattering and other issues
with Pade-FDTD and (RC-FDTD) [15,16]. In 2009, Wang et al. ana-
lyzed metal object covered ferrite to back radar cross section (RCS)
by using SO-FDTD [17,18]. The reference [16] needs to calculate
the time domain convolution and calculation process is complex,
while the reference [17] requires the dispersive model for the ratio-
nal fraction form, which limits its application in a certain range.
This paper presents a two-step indirect FDTD method for magnetic
anisotropy medium, which decomposed the constitutive relation of
magnetic into two  parts, then with an intermediate variable instead
of the complex frequency-dependent entry, to solve electromag-
netic problems about magnetic anisotropy by solving.

2. Presentation of new calculating method

Located along the z-axis direction of the external magnetic field,
then the permeability of anisotropic ferrite can be expressed as the
following tensor form [19,20]:
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where,

�r = 1 + Tωm
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, T = ω0 + jω  ̨ (2)

Consider the propagation of uniform plane wave along the z
direction, in the one-dimensional case, then Ez = 0, Bz = 0, Hz = 0. The
partial derivatives of the field along the direction of x, y is 0. The
Maxwell equations can be decomposed into component form as
shown in the formulas (3-a) and (3-b):
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The constitutive equations for ferrite:[
Bx(ω)

By(ω)

]
=
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For ease of programming, normalization equations is used in
the derivation of FDTD formulas [21], and therefore the formulas
(3) and (4) will no longer appear ε0 and �0 in form. The following
derivation is based on the normalized Eq. (2) into a normalized (4),
we obtain:[
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Its form in time domain:[
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where,
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Here T is same with Eq. (2); we can get:
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The derivation procedure of Jx(ω) and Jy(ω) is as follows, change
the Eqs. (7) and (8) into the time domain and finishing:(
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From (9) and (10) we  can see that it need to use the current
Hn

y and Hn
x to solve Jx(ω) and Jy(ω) due to the mutual coupling of

the magnetic field makes it impossible to obtain solutions directly
from Eqs. (9) and (10). Therefore substituted them into (5), and Jn

y
got from Eq. (10) is adopted in the Eq. (9) then, we  can get:
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where the coefficients in Eqs. (11) and (12) are as follows:
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