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a  b  s  t  r  a  c  t

We  propose  a new  technique  to realize  an  optical  time-frequency  conversion  system  for  ultrafast  tempo-
ral  processing  that  is based  on  linear  time  lens.  The  demonstrated  time  lens  produces  more  than  25,000
of phase  shift.  Time-frequency  conversion  systems  are  realized  by the  combination  of  temporal  quadratic
phase  modulation  and  group-velocity  dispersion.  We  simulate  the  results  with  a time  resolution  of  27 fs
over  a time  window  of  1  ns,  representing  a large  enough  time-bandwidth  product.
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1. Introduction

Space-time duality is based on the analogy between the equa-
tions that describe the paraxial diffraction of light beams in space
and the first-order temporal dispersion of optical pulses in a dielec-
tric [1–3]. The duality can also be extended to consider imaging
lenses: the use of quadratic phase modulation on a temporal
waveform is analogous to the action of a spatial lens on the
transverse profile of a spatial beam [4,5]. Pulse compression [6],
timing-jitter reduction [7], time magnification [8], time cloaking [9]
have been demonstrated using this concept. The effects of diffrac-
tion and spatial lenses on a beam of light are equivalent to the
effects of dispersion and time lenses on a pulse of light. The time-
frequency conversion process is best understood by noting the
analogy between a temporal optical system manipulating pulses
of light and a spatial optical system manipulating beams of light.
Here we investigate a new regime in the interaction between opti-
cal pulses and time lenses. The optical pulse to be measured travels
through one focal time of dispersion, supplied by the standard
single-mode fiber, then is phase modulated by the time lens with
a quadratic time phase shift. We  know from Fourier optics that the
field distributions at the front focal plane and output plane of the
spatial lens are related by a Fourier transform, and we  will show
below that the same relation holds for a time lens. Also the output
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field distribution and its spectral frequency distribution are related
by a Fourier transform [10,11].

We also provide a simulation experimental demonstration of
the phenomenon using a linear time lens. Among other poten-
tial applications, spectro-temporal imaging can be applied for the
measurement of the intensity temporal profile of ultrashort optical
pulses using a conventional spectrum analyzer [12,13]. In contrast
with other approaches, this method provides a fast, direct (single-
shot), and unambiguous measurement of the temporal waveform,
which is important in some relevant engineering applications such
as modern high-speed communications. In this letter, we derive the
conditions for achieving time-frequency conversion using a single
time lens as well as the expressions governing this operation.

2. Principle of arbitrary waveform measurement

The fundamental principle behind temporal imaging is the anal-
ogy between the electric field propagation behavior in the cases
of paraxial diffraction and narrow-band dispersion. In paraxial
diffraction, the spatial envelope profile E(x, y, z) of a monochromatic
beam, E(x, y, z, t) = E(x, y, z)exp(i(ω0t − kz)), propagates according to
[2]
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This is easily solved in the transverse spatial frequency domain
where the spectrum, ε(kx, ky, z) = F{E(x, y, z)}, acquires a quadratic
spectral phase upon propagation
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For the narrow-band dispersion problem, we consider the evo-
lution of a pulse envelope A(z0) for the plane wave profile, A(z,
t) = A(z0)exp(i(ω0t − ˇz)). The spectrum ε(z, ω) consists of the base-
band spectrum A(z, ω) of the envelope convolved up to the carrier
ω0, i.e., ε(z, ω) = A(z, ˝)  exp(−iˇz), where  ̋ = ω − ω0. About the
carrier at frequency ω0, each spectral component represents a plane
wave with the propagation constant ˇ(ω), which can be expanded
to second order in a Taylor series [8]

ˇ(ω) = ˇ0 + (ω − ω0)ˇ′ + (ω − ω0)2 ˇ′′
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Here ω0 is used to represent a general carrier frequency. In a para-
metric temporal imaging system, the carrier will change due to
frequency conversion in the time lens and subsequent dispersive
delay lines must be evaluated at the new carrier frequency.

By transforming to a traveling-wave coordinate system

� = (t − t0) −
(

z − z0

vg(ω0)

)
and � = z − z0, (5)

where t0 and z0 are references in real time-space, defining the
center of the waveform at � = 0 in the traveling-wave system, and
vg(ω0) is the group velocity at the carrier frequency ω0, the gov-
erning equation for the evolution of the envelope A(�, �) is of the
same form as that for paraxial diffraction (1)
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Again, easily solved in the frequency domain, the spectrum of
the pulse envelope A(�, ˝)  = F{A(�, �)} is described independent
of the carrier frequency and evolves during propagation according
to [4]

A(�, ˝)  = A(0, ˝)  exp
(

− i�′′

2
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)
, (7)

where, �′′ = �ˇ′′,  ̋ is a baseband Fourier spectral component.
Any mechanism that produces a phase modulation that is

quadratic phase shift in time can be considered as a time-domain
analog to a space lens. Kolner showed that the ideal time lens has
a quadratic phase versus time [3]:
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Fig. 1 shows the concept of time lens with parabolic phase curve
and linear chirp curve. An ideal lens imparts a quadratic phase ϕf(�)
to the signal such that ϕf (�) = −�2/2�′′

f
, where �′′

f
is the focal group-

delay dispersion (GDD) associated with the time lens and is equal
to the inverse of the second derivation of the phase.

The definitions of the input dispersion and time lens in a time-
frequency conversion system are given in Table 1.

The time-frequency conversion system operation is determined
by following the input field E0(0, �), an optical carrier at frequency
ω0 modulated by the pulse envelope u0(0, �),

E0(0,  �) = u0(0,  �)eiω0� (9)

Firstly, the effect of the dispersion through a standard single-
mode fiber with the propagation constant ˇ(ω) distorts the input

Fig. 1. The temporal profile of the phase and its derivative for ideal time lens.

Table 1
Equation describing the elements of a time-frequency conversion system.
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Fig. 2. Diagram of the proposed configurations for measuring optical pulses based
on  linear time Lens. SSMF = standard single-mode fiber, OSA = optic spectrum ana-
lyzer.

pulse envelope u0(0, �) into u1(�1, � ′):
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The propagation constant ˇ(ω) of the dispersive medium can be
approximated by a three term Taylor series Eq. (3).

A sketch of the experimental setup for a time lens measurement
is shown in Fig. 2. The pulse u1(�1, � ′) is then quadratic phase mod-
ulated by the time lens. Eq. (8) showed that the ideal time lens
has a quadratic phase versus time. After passing through the dis-
persive medium and the optical quadratic phase modulator, the
output pulse u2(�1 + �, � ′) is related to the input pulse u0(0, �) by
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