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In  this  paper,  propagation  of  the  Cartesian  beams  in the non-Kerr  law  media  with  power  law  nonlinearity
is investigated  by  ABCD  matrix  method.  For  this  purpose,  the  transfer  matrix  and  critical power  of  the
Cartesian  beams  for  propagating  through  these  media  are  presented.  Then,  the  evolutions  of the  beam
width  and  curvature  radius  of  the Cartesian  beams  during  propagation  are  analyzed.
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1. Introduction

The Cartesian beams are the general solution of the paraxial
wave equation in Cartesian coordinates [1]. The complex amplitude
of the Cartesian beams is described as confluent hypergeomet-
ric functions or parabolic cylinder functions and these beams are
characterized by three complex parameters. For special values
of the beam parameters, the Cartesian beams convert to many
known solutions of optical beams such as the standard, elegant
and generalized Hermit–Gauss beams, Cosine–Gauss beams, the
Lorentz beams, the Airy beams and the fractional order beams
[2–6]. Propagation of the Cartesian beams in ABCD systems and
nonlocal nonlinear media has been investigated [1,7]. Bandres
et al. introduced a closed-form expression for the overlap between
two different Cartesian beams [5]. Propagating and shaping char-
acteristics of the one-dimensional Cartesian Parabolic-Gaussian
beams through complex ABCD optical systems have been stud-
ied by Lopez-Mago et al. [8]. The main nonlinear effect that arises
in optical materials is the Kerr effect. Recently, nonlinear effects
of non-Kerr law media which can be found in various materials
have been received attention extensively [9–15]. There are sev-
eral non-Kerr law nonlinearities such as power law, parabolic law,
the dual-power law, and exponential law. Although, propagation
of the optical solitons in non-Kerr law media has been simulated
by solving nonlinear Schrodinger equation numerically [16–19], in
this paper, propagation of the Cartesian beams in the non-Kerr law

∗ Corresponding author. Tel.: +98 71 37261392.
E-mail addresses: honarasa@sutech.ac.ir (G. Honarasa), z.farmani@sutech.ac.ir

(Z. Farmani), keshavarz@sutech.ac.ir (A. Keshavarz).

media with power law nonlinearity is simulated by using suitable
transfer matrix.

The paper is organized as follows: In Section 2, the propagation
of the Cartesian beam in an arbitrary ABCD optical system is briefly
reviewed. The transfer matrix of non-Kerr law media with power
law nonlinearity is defined in Section 3. propagation properties of
Cartesian beam is investigated in Section 4. Finally, the paper is
concluded in Section 5.

2. Cartesian beam

The transverse distribution of the even and odd Cartesian beams
at the output plane of an ABCD optical system is described by the
confluent hypergeometric function 1F1(a, b; x) as follows [1]:

tUˇ(x; p, q) = t�ˇ(Px2)
(t−1/2)/2

1F1(ˇ, t; Px2) exp

(
ikx2

2q

)
. (1)

Since the fields can be split into products of solutions in the x and y;
tUˇ(x, y; p, q) = tUˇ(x; p, q)tUˇ(y; p, q), without loss of generality,
the solution of the paraxial wave equation in only one Cartesian
coordinate has been considered. The value of parity factor t for
even beams is 1/2 and for odd beams is 3/2. In Eq. (1), k is the
wavenumber,  ̌ is a complex parameter and

P ≡ P(p, q) = ik

2

(
1
p

− 1
q

)
. (2)

The Cartesian beams are characterized by the complex parameters
p and q which are related to their initial values (p0, q0) at input
plane z = 0 by the following transformation relations:

p = Ap0 + B

Cp0 + D
, q = Aq0 + B

Cq0 + D
. (3)
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The factor t�ˇ

t�ˇ = (A + B/q0)ˇ−(t+1/2)/2

(A + B/p0)ˇ−(t−1/2)/2
(4)

is a scaling factor and comes from the propagation of the beam
through the ABCD system. Eq. (1) reduces to many known solutions
of optical beams with rectangular symmetry for some special values
of the three parameters (ˇ, p0, q0) that are complex in the most
general case. For example, the elegant Hermite–Gaussian beams are
obtained by setting p0 =∞, q0 = − izR and  ̌ = − n where zR = kω2

0/2 is
Rayleigh distance of the Gaussian beam and n is an integer number
[1,5]. The propagation of the Cartesian beams through any optical
system with ABCD transfer matrix can be analyzed by Eqs. (1)–(4).

3. Non-Kerr law media with power law nonlinearity

Several forms of nonlinearity have been investigated by devel-
oping of the Kerr media. The most important form of these
nonlinearities is power law nonlinearity. This nonlinearity is a gen-
eralization of Kerr law nonlinearity and can be found in various
materials such as nonlinear plasmas and semiconductors. Refrac-
tion index of the non-Kerr law media due to power law nonlinearity
is given by [9]:

n = n0 + n2E |E|2m, (5)

where n0 is linear refractive index of the medium, n2E is the higher
order nonlinear refractive index, E is the electric filed and m is
the order of power law nonlinearity. For special case m = 1, the
power law nonlinearity reduces to Kerr law nonlinearity. In (5),
it is necessary to have 0 < m < 2 to prevent wave collapse [9,20]
and m /= 2 to avoid self-focusing singularity [20]. By considering
a Gaussian field distribution for the electric field of incident beam
E = E0 exp(−r2/ω2

0) and expanding the exponential function and
keeping the two first terms, Eq. (5) becomes

n = (n0 + n2EE
2m
0 ) − 2mn2EE

2m
0 (r2/ω2

0) ≈ n0 − 2mn2EE
2m
0

ω2
0

r2, (6)

where n2EE
2m
0 � n0 which is true in practice has been used.

On the other hand, transfer matrix for beam propagation in lens-
like media with following refractive index

n = n0 − n2

2n0
r2 (7)

is expressed by [21]:⎛
⎜⎜⎜⎜⎝

cos
(
z
√
n2

n0

)
n0√
n2

sin
(
z
√
n2

n0

)

−
√
n2

n0
sin
(√

n2

n0

)
cos
(
z
√
n2

n0

)
⎞
⎟⎟⎟⎟⎠ . (8)

By comparing Eqs. (6) and (7), one find that the transfer matrix (8)
can be used for non-Kerr law media with power law nonlinearity
considering n2 as follows:

n2 = 4mn0n2EE
2m
0

w2
0

. (9)

Then, the convergence angle of a Gaussian beam in a non-Kerr law
media with power law nonlinearity can be expressed by [22]:

�NL = 2ω0
√
n2

�n0
. (10)

Also, the angle of spread of the beam in absence of any nonlinear
effects due to the diffraction is given by [23]:

�SP = �0

�ω0n0
. (11)

For �SP = �NL, self-focusing and diffraction will cancel each other. In
this case, using Eq. (9) the critical electric field of Gaussian beam is
obtained as follows:

EGBcr =
(

�0

4ω0
√
mn0n2E

)1/m

(12)

and the critical power of the Gaussian beam is given by [22]:

PGBcr = 1
4
�cn0ε0ω

2
0|Ecr |2 = �cn0ε0ω2

0
4

(
�0

4ω0
√
mn0n2E

)2/m

. (13)

If the power of incident Gaussian beam P0 is equal to the criti-
cal power P0 = PGBcr , the Gaussian beam propagates without any
focusing or defocusing in the non-Kerr media with power law non-
linearity. The critical power of the Cartesian beam will be defined
in Section 4. If the input power is equal to the critical power of the
Cartesian beam, the beam width of the Cartesian beam keeps invari-
ant during propagation through the non-Kerr media with power
law nonlinearity.

By using Eqs. (9) and (13), the transfer matrix (8) for the non-Kerr
media with power law nonlinearity can be described by⎛
⎜⎜⎜⎜⎜⎝

cos

[
�z(P0/PGBcr )

m/2

2n0zR

]
2n0zR

�(P0/PGBcr )
m/2

sin

[
�z(P0/PGBcr )

m/2

2n0zR

]

−�(P0/PGBcr )
m/2

2n0zR
sin

[
�z(P0/PGBcr )

m/2

2n0zR

]
cos

[
�z(P0/PGBcr )

m/2

2n0zR

]
⎞
⎟⎟⎟⎟⎟⎠.

(14)

4. Propagation properties of the Cartesian beams

Now, the dynamical evolution of Cartesian beams in non-Kerr
law media with power law nonlinearity can be studied based on
Eq. (1) and the transfer matrix (14).

Fig. 1 shows the transverse field distribution of a typical Carte-
sian beam during propagation through the non-Kerr media with
power law nonlinearity for different values of input powers. In
Fig. 2, the behavior of a typical Cartesian beam in x − z and y − z
planes have been plotted. It can be found from the figures that
when the Cartesian beam propagates these media, the inten-
sity distribution varies periodically. The periodic distance is z =
2n0zR/(P0/PGBcr )

m/2
which can be found from Eq. (14). In both fig-

ures (and in the rest of the paper), parameters of the Cartesian
beam in plane z = 0 set as p0 =∞, q0 = − izR, ˇx = −1, ˇy = −0.5, tx = 1/2
and ty = 3/2 where zR = kω2

0/2 is Rayleigh distance of the Gaussian
beam. With these parameters the Cartesian beam reduces to an
Elegant Hermit–Gaussian beam [1,5].

The second-order moments definition can be used to calculate
the beam width of the Cartesian beams. The beam width at the
waist plane w1 can be obtained by [24]:

w2
1 = 4

∫ ∞
−∞ x

2|tUˇ(x; p0, q0)|2dx∫ ∞
−∞ |tUˇ(x; p0, q0)|2dx

(15)

and the beam width at the observation plane w2 after propagation
through an optical ABCD system is related to w1 as follows:

w2
2 = A2w2

1 + 2ABV1 + B2U1, (16)
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