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a  b  s  t  r  a  c  t

Based  on  the  extended  coupled  nonlinear  Schrödinger  equations  in an optical  fiber  with  quintic  nonlin-
earity  (QN),  the  approximate  analytical  frequency  chirps  and  the  critical  distances  for  the  cross-phase
modulation  induced  optical  wave  breaking  (OWB)  are  discussed  for the  initial  Gaussian  optical  pulses.
Evolutions  of the  frequency  chirps,  shapes  and  spectra  of  pulses  are  numerically  calculated  in  the  normal
dispersion  regime.  It is  shown  that, the  approximate  analytical  frequency  chirps  accords  well  with  the
numerical  ones  at the  initial  evolution  stages  of the  pulses.  And  the  calculated  approximate  critical  OWB
distances  accord  well  with  the numerical  ones  only  for the  traditional  OWB.  In addition,  for  the  positive
QN  and  the  negative  one  but  with  small  absolute  values,  the  traditional  OWB  can  be  observed.  While  for
the negative  QN  with  large  absolute  values,  non-traditional  OWB  may  occur.  Namely,  soliton  pulse  trains
may  develop  during  the  pulse  propagation.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introductions

It is well-known that, when propagating inside an optical fiber, optical pulses may  experience rich time- and frequency-domain evo-
lutions due to the combined effects of the group-velocity dispersion (GVD), self-phase modulation (SPM), cross-phase modulation (XPM),
self-steepening, intra-pulse Raman scattering, and etc. As time goes on, more and more interesting and important nonlinear optical prop-
agating phenomena in an optical fiber have been revealed. Typically, these phenomena include modulation instability [1,2], optical wave
breaking (OWB) [3–9], various bright, dark, or gray solitons and soliton pairs [10], self similaritons [11], optical rogue waves [12], opti-
cal shocks [13], and so on. Owing to their beneficial or detrimental effects on various engineering applications such as optical switching,
supercontinuum generation, optical soliton communications, high power and high quality ultra-short pulse fiber lasers, pulse compression,
high-repetition-rate pulse train generation, frequency conversion, and so on, they have attracted intensive interests and been extensively
studied.

OWB is an important nonlinear optical phenomenon which is usually thought to cause oscillation structures in the wings of the pulse
and correspondingly in the sidelobes of the pulse spectrum when the pulse propagates in an optical fiber. People generally think it occurs in
the normal dispersion regime of an optical fiber. However, owing to the fact that, the developed nonmonotonic frequency chirps may cause
overtaking of different pulse components and then break the initial quasi-continuous optical wave or high-order bright (dark) solitons
into ultra-short pulse trains or multiple peak (dip) structures, this phenomenon is also factually closely related to modulation instability or
breaking of high-order solitons. We  all know that modulation instability and high-order bright solitons generally occur in the anomalous
dispersion regime. That is to say, generally speaking, OWB  can also occur in the anomalous dispersion regime. Moreover, the generated
oscillation structures can also appear near the pulse center. Owing to its considerable detrimental influence on some practical applications
such as high efficiency pulse compression, generation of high quality cleaning pulses in fiber lasers, generation of similaritons in fiber
amplifiers, and so on, it has been extensively studied analytically [7–9], numerically [7,9], and experimentally [13,14]. Up to now, due
to the mathematical difficulty in accurate analytical procedure of the initial value problem in nonlinear partial differential equation, its
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analytical approach is usually approximate. In this work, we will pay attention to both the numerical and analytical approaches of OWB.
Being different from the previous investigations [5,6], we will take into account both QN and XPM effects.

2. Theoretical analysis

In case of quintic nonlinearity, the slowly varying envelopes  j (j = 1, 2) of the two  optical pulses with the same polarization but different
carrier frequencies propagating in an optical fiber should satisfy the following coupled extended nonlinear Schrödinger equations [15]⎧⎪⎪⎨
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where ˇ2, �1, �2, z, and T are the second-order group velocity dispersion (GVD) coefficient, cubic nonlinear coefficient, quintic nonlinear
coefficient, propagating distance, and the retarded time, respectively. The last two  terms on the right-handed sides of Eq. (1) stand for SPM
and XPM, respectively.

For the initial Gaussian pulses of the forms

 j (0, T) = Aj0 exp
(
−T2/2T2

0

)
(2)

where Aj0 and T0 are, respectively, the input peak amplitudes of the pulses and the pulse durations. For OWB  is closely related to the
developing frequency chirp, we will first discuss it. For the case of no nonlinearities, GVD induced chirps can be deduced as the following
forms
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Taking the lowest order in z, Eq. (1) becomes the following forms
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For the dispersionless (ˇ2 = 0) case, one can realize that the solutions of Eq. (1) satisfy the forms  j (z, T) =  j (0, T) exp
[
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]
(j = 1,

2), where �j are SPM and XPM induced nonlinear phase shifts at the distance z and can be deduced as
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Then the frequency chirps induced by SPM and XPM at the distance z can be deduced as

ωcNj (z, T) = −z
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Substituting Eq. (2) into Eqs. (5) and (6), one can, respectively, obtain the nonlinear phase shifts and chirps of Gaussian pulses at the
distance z as
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For simplicity, we assume A2
20 = A2

10 = A2
0 in the following discussion and then Eq. (8) changes as
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