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The  epitome  of this  paper  centers  on chaos  synchronization  problem  of  different  dimensional  chaotic  sys-
tems  in  different  dimensions  using  two scaling  matrices,  the  Lyapunov  stability  theory,  and  the  stability
theory  of  linear  system.  The  controller  is  designed  to assure  that  the  synchronization  of two  different
dimensional  chaotic  systems  is achieved.  Numerical  examples  and  computer  simulations  are  used  to
validate,  numerically,  the  proposed  synchronization  schemes.
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1. Introduction

Our natural world consists of physical systems that are undoubt-
edly nonlinear. It has been repeatedly demonstrated by scientists
in the last recent decades that nonlinear systems, which mod-
els our real world, can display a variety of behaviors including
chaos and hyperchaos. The most important characteristic of chaotic
dynamics is its critical sensitivity to initial conditions, which is
responsible for initially neighboring trajectories separating from
each other exponentially in the course of time. This behavior made
chaos undesirable and unwanted in many cases of research as it
reduces their predictability over long time scales. But this special
attribute may  be a valuable advantage in certain areas of research.
Chaotic dynamics has the ability to amplify small perturbations
which improves their utility for reaching specific desired states
with very high flexibility and low energy cost. In other words, we
could try to control chaos for the benefit of our needs. Synchro-
nization of different chaotic or hyperchaotic systems is one of the
few main control methods popularly discussed recently. This is
generally due to its prospective applications especially in chem-
ical reactions, power converters, biological systems, information
processing, secure communications, etc. [1]. The current problems
of synchronization of chaos are very interesting, non-traditional,
and indeed very challenging [2,3]. A wide variety of approaches
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have been proposed for chaos synchronization such as adaptive
control [4–9], linear and nonlinear feedback control [10–16], active
control [17–21] complete synchronization [22] and projective syn-
chronization [24–28]. To the best of our knowledge, most of the
existing papers discuss the synchronization between two  chaotic
or hyperchaotic with the same dimension. However, in many real
physics systems, the synchronization is carried out through the
oscillators with different dimensions, especially the systems in
biological science and social science. For example, in the cardio-
respiratory system, the synchronization between the heart and
the lung has been found even though their models have different
dimensions [23]. In this paper, we proposed a method to syn-
chronize two  chaotic systems in different dimensions even though
they have different dimensions, the synchronization controller is
designed based on Lyapunov stability theory and the stability the-
ory of linear system. An analytic expression of the controller is
shown. Finally, illustrative examples of chaotic and hyperchaotic
systems are used to show the effectiveness of the proposed method.

2. Theory

Consider the drive system in the form of

ẋ(t) = f (x(t)), (1)

where x(t) ∈ Rn is the state vector of the drive system (1), f : Rn → Rn

defines a vector field in n-dimensional space. On the other hand, the
response system is assumed by

ẏ(t) = g(y(t)) + U, (2)
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where y(t) ∈ Rm is the state vector of the response system (2),
g : Rm → Rm defines a vector field in m-dimensional space, U ∈ Rm

is control input vector.

Definition 1. The drive system (1) and the response system (2)
are said to be synchronized in dimension d, with respect to scaling
matrices � and �,  if there exists a controller U ∈ Rm and given
matrices � = (�)d×m and � = (�)d×n such that the synchronization
error e(t) = �y(t) − �x(t), satisfies that lim

t→∞
‖e(t)‖ = 0.

2.1. Synchronization between 3D drive and 4D response chaotic
systems in 3D

In order to observe the synchronization behavior between
between 3D drive and 4D response chaotic system in 3D, the drive
and the response systems are defined below respectively,

ẋ(t) = Ax(t) + f (x(t)), (3)

where x(t) ∈ R3 is state vector, A ∈ R3×3, f : R3 → R3 are the linear
part and the nonlinear part of system (3), respectively. Eq. (3) is
considered as a drive system. By introducing an additive control
U = (u1, u2, u3, u4)T ∈ R4, then the controlled response system is
given by

ẏ(t) = g(y(t)) + U, (4)

where y(t) ∈ R4 is state vector, g : R4 → R4. The error system
between the drive system (3) and the response system (4), can be
derived as

ė(t) = (A − L1)e(t) + R + �U,  (5)

where � = (�ij) ∈ R3×4, � = (�ij) ∈ R3×3 are scaling matrices and

R = (L1 − A)�y(t) − ((L1 − A)� + �A)x(t) + �g(y(t)) − �f  (x(t)),

(6)

and L1 ∈ R3×3 is an unknown control matrix to be determined.
Assume that U = (u1, u2, u3, 0). Then, the error system (5), can be
written as

ė(t) = (A − L1)e(t) + R + �̂Û, (7)

where

�̂ =

⎛
⎜⎝

�11 �12 �13

�21 �22 �21

�31 �32 �33

⎞
⎟⎠ , (8)

and Û = (u1, u2, u3)T , is the new control law. To achieve synchro-
nization between systems (3) and (4), the controller Û is chosen
as

Û = −�̂−1R, (9)

where �̂−1 is the inverse of �̂. By substituting Eq. (9) in Eq. (5), the
error system can be described as

ė(t) = (A − L1)e(t). (10)

Theorem 1. If there exists a positive definite matrix P, such that

(A − L1)T + (A − L1) = −P. (11)

Then, the drive system (3) and the response system (4) are globally
synchronized, with respect to scaling matrices � and �,  under the
controller (9).

Proof. Construct the candidate Lyapunov function in the form

V(e(t)) = eT (t)e(t), (12)

then the time derivative of V along the solution of error dynamical
system equation (10) gives that

V̇(e(t)) = ėT (t)e(t) + eT (t)ė(t)

= ėT (t)(A − L1)T e(t) + eT (t)(A − L1)e(t)

= eT (t)[(A − L1)T + (A − L1)]e(t) = −eT (t)Pe(t) < 0.

It is clear that V is positive definite and V̇ is negative definite in the
neighborhood of the zero solution for system (10). Therefore, the
systems (3) and (4) are globally synchronized asymptotically, i.e
lim
t→∞

‖e(t)‖ = 0. This completes the proof. �

2.2. Synchronization between 3D drive and 4D response chaotic
systems in 4D

In order to observe the synchronization behavior between
between 3D drive and 4D response chaotic system in 4D, the drive
and the response systems are defined below, respectively,

ẋ(t) = f (x(t)), (13)

where x(t) ∈ R3 is state vector, f : R3 → R3. Eq. (13) is considered as
a drive system. By introducing an additive control U = (u1, u2, u3,
u4)T ∈ R4, then the controlled response system is given by

ẏ(t) = By(t) + g(y(t)) + U, (14)

where B is an 4 × 4 constant matrix, g : R4 → R4 is a nonlinear func-
tion and U ∈ R4 is a controller. The error system between the drive
system (13) and the response system (14), can be derived as

ė(t) = (B − L2)e(t) + R + �U,  (15)

where � = (�ij) ∈ R4×4, � = (�ij) ∈ R4×3 are scaling matrices, and

R = ((B − L2)� + �B)y(t) − (B − L2)�x(t) + �g(y(t)) − �f (x(t)),

(16)

where L2 ∈ R4×4 is an unknown control matrix to be determined. To
achieve synchronization between systems (13) and (14), we  choose
the controller U as

U = −�−1R, (17)

where �−1 is the inverse matrix of � .

Theorem 2. If L2 is chosen such that all eigenvalues of B − L2 are
strictly negative, then the drive system (13) and the response system
(14) are globally synchronized with respect to � and �,  under the
control law (17).

Proof. By substituting Eq. (17) in Eq. (15), the error system can be
written as

ė(t) = (B − L2)e(t). (18)

According to the stability criterion of linear system, if all eigenval-
ues of B − L2 are strictly negative, it is immediate that all solution of
error system (18) go to zero as t→ ∞.  Therefore, systems (13) and
(14) are globally synchronized. This completes the proof. �

3. Applications

In this section, we give two examples to show the effectiveness
of our proposed synchronization schemes. We  choose the Rössler
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