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a  b  s  t  r  a  c  t

We  analyze  the  evolution  of  a complex-source-point  spherical  wave  through  a concentric  catoptric  sys-
tem that is  made  up  of  one  convex  grating  and  two  concave  mirrors.  First  we  trace  the  paraxial  paths
of a chief  ray  propagating  from  a complex  source  point  through  the  system  to complex  image  points  of
different  orders.  Then  we find  an expression  of the  fourth  order-corrected  Gaussian  beam  which  includes
Seidel-type  aberrations.  Finally,  we analyze  the  quality  of  an aberrant  Gaussian  beam  diffracted  through
the  system.  The  results  presented  here  will be  useful  in dealing  with  the  propagation  of  a  focused  Gauss-
ian beam  through  a  diffractive  optical  system  and  the  beam  quality  degradation  due  to aberration  of  the
system.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

A complex-source-point spherical wave (CSPSW) can be
expanded near the optical axis in a power series whose first term is
a Gaussian beam. The CSPSW was first introduced by Deschamps [1]
and extensively analyzed by Felsen [2]. Later, Couture and Belanger
showed that the sum of all the higher order corrections to the
paraxial Gaussian beam was reduced to the CSPSW [3]. The CSPSW
is very useful in dealing with the propagation and scattering of a
strongly focused laser beam [4,5]. Recently, we examined the evolu-
tion of the CSPSW along the axis of an optical system of spherical (or
non-spherical) surfaces so that the fourth order-corrected Gauss-
ian beam could be represented in terms of spherical aberration [6],
and we also used the CSPSW to analyze the quality of a slightly
inclined Gaussian beam passing through a rotationally symmetric
system which involves any combination of refracting (or reflect-
ing) surfaces [7], zone plates [8], and graded-index lenses [9]. On
the other hand, the advanced manufacturing techniques to produce
diffractive optical surfaces renewed interest in diffractive optics
that utilized some fundamental structure periodicity [10,11]. In
an earlier work [12], we found the stigmatic condition that could
be useful in rapidly creating an initial design of a convex grating
spectrometer. However, the propagation of the CSPSW through the
system and the beam quality degradation due to aberration of the
system have not been analyzed.
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In this paper we  examine the evolution of the CSPSW through a
concentric catoptric system that is made up of one convex grating
and two  concave mirrors. The system is generally not telecentric
in the sense that the aperture stop at the grating may  be displaced
from the back (or front) focal plane of the preceding (or following)
optics. In our approach, we first trace the paraxial paths of a chief
ray propagating from a complex source point through the system
to complex image points of different orders. Then we derive the
wave function of the light converging to the complex image point
that can be represented in terms of Seidel-type aberrations, while
the terms of up to fourth order in aperture variables are taken into
account. Finally, we analyze the quality of an aberrant Gaussian
beam diffracted through the system, on condition that the center
of the incident Gaussian beam is located in the plane orthogonal to
the optical axis, containing the common center of curvature of the
system. The results described here will be useful in dealing with
the propagation of a focused Gaussian beam through a diffractive
optical system and the beam quality degradation due to aberration
of the system.

2. Propagation of a Gaussian beam through a convex
grating spectrometer

Fig. 1 shows the setup of a concentric catoptric system that is
composed of one convex grating and two concave mirrors, in which
C is the common center of curvature of the grating and the mir-
rors, and V is the center of the grating taken as an aperture stop.
The aperture stop may  be displaced from the back (or front) focal
plane of the preceding (or following) optics. The coordinate system
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Fig. 1. A concentric catoptric system that is composed of one convex grating and two
concave mirrors, in which C is the common center of curvature of the grating and the
mirrors, and V is the center of the grating taken as an aperture stop. The coordinate
system is referenced to the tangent plane of each mirror which is parallel to the x
and y axes, and a straight line connecting the two points C and V is chosen as the
z  axis. The grating lines ruled on the convex surface are parallel to the x axis and
equally spaced with a period of p along the y axis. A chief ray of light starts from
a  source point O1 and goes to another point V on the grating surface after being
reflected by the first concave mirror. The ray of light diffracted at the point V arrives
at  different image points O′

3 according to diffracted orders after being reflected by
the third concave mirror. The chief ray from O1 (or O′

3) placed at the yz plane, makes
an  angle of ū1 (or ū′

3) with the z axis. The local coordinates of O1 (or O′
3) referenced

to the first (or third) mirror are assumed to be of (0, ȳ1 + ib1 sin ū1, z̄1 + ib1 cos ū1)
(or (0, ȳ′

3 + ib′
3 sin ū′

3, z̄
′
3 + ib′

3 cos ū′
3)).

is referenced to the tangent plane of each mirror which is parallel
to the x and y axes, and a straight line connecting the two  points
C and V is chosen as the z axis. The grating lines ruled on the con-
vex surface are parallel to the local x axis and equally spaced with
a period of p along the y axis. A chief ray of light starts from a
source point O1 and goes to another point V on the grating sur-
face after being reflected by the first concave mirror. The ray of
light diffracted at the point V arrives at different image points O′

3
according to diffracted orders after being reflected by the third con-
cave mirror. The chief ray emerging from O1 (or converging to O′

3),
placed at the yz plane, makes an angle of ū1 (or ū′

3) with the z axis.
Both ū1 and ū′

3 are positive (or negative) when measured clock-
wise (or anti-clockwise) from the ray of light to the z axis. The local
coordinates of O1 (or O′

3), referenced to the first (or third) concave
mirror, are assumed to be of (0, ȳ1 + ib1 sin ū1, z̄1 + ib1 cos ū1) (or
(0, ȳ′

3 + ib′
3 sin ū′

3, z̄
′
3 + ib′

3 cos ū′
3)), where b1 (or b′

3) is the parame-
ter to be determined later.

A spherical wave radiating from the point O1 to another point
(x1, y1, z1) in the medium of refractive index n1 may  be expressed
as

 (x1, y1, z1, t) = A

r1
exp(ikn1r1 − iωt), (1)

where A is the constant, i(= √−1) is the imaginary symbol,
k(= 2�/�) is the magnitude of the wave vector in vacuum, ω is the
angular frequency of the light, and

r1 = [x2
1 + (y1 − ȳ1 − ib1 sin ū1)2 + (z1 − z̄1 − ib1 cos ū1)2]

1/2
. (2)

If we choose the branch of r1 such that its real part is equal to (z1 −
z̄1) when it is large, the wave function (1) can then be approximated
as

 (x1, y1, z1, t) � A

z1 − z̄1 − ib1

exp

{
ikn1

[
z1 − z̄1 − ib1 + x2

1 + (y1 − ȳ1 − ib1ū1)2

2(z1 − z̄1 − ib1)

]
− iωt

}
, (3)

in the paraxial regime where |ū1| � 1 and x2
1 + (y1 − ȳ1)2 �

(z1 − z̄1)2 + b2
1. It is obvious that the wave function (3) can represent

a slightly inclined Gaussian beam centered at the local coordinates
(0, ȳ1, z̄1), in which the beam axis makes an angle of ū1 with the z
axis and the Rayleigh range of the beam is given by b1 = n1�w2

1/� in
terms of the minimum spot radius w1 [1–3]. Similar analyses may
be done to the case of a spherical wave converging to the image
point O′

3. In that case, the spherical wave is reduced to a parax-
ial Gaussian beam centered at the local coordinates (0, ȳ′

3, z̄
′
3), in

which ū′
3 and b′

3 correspond to the slope of the beam axis and the
Rayleigh range of the beam, respectively.

Applying Fermat’s principle, we can get the formal equations
for tracing the paraxial path of the chief ray from O1 through the
optical system to O′

3 as follows [7]:

n′
j

z̄′
j
+ ib′

j

= nj
z̄j + ibj

+
n′
j
− nj

Rj
,

ȳPj = ȳj − z̄jūj,

n′
j
ū′
j
− m�

pj
= njūj −

n′
j
− nj

Rj
ȳPj ,

ȳ′
j
= ȳPj + z̄′jū′

j
,

(4)

for j = 1, 2, and 3 . In Eq. (4) nj (or n′
j
) is the refractive index for a

ray incident on (or emerging from) the jth mirror, which is positive
(or negative) for the ray of light propagating toward the positive
(or negative) z axis. Thus we  have n1 = − n2 = n3, and n′

j
= −nj for

the incident and reflected rays on the jth mirror. Rj is the radius of
curvature of the jth mirror, which is positive (or negative) when
the center of curvature is on the right-hand (or left-hand) side of
the surface. m is the diffracted order and the grating spacing is
assumed to be of p2 = p, while p1 = p3 =∞. If we  let bj = nj�w

2
j
/� (or

b′
j
= n′

j
�w′2

j
/�)  in terms of the minimum spot radius wj (or w′

j
) for

the beam incident on (or emerging from) the jth mirror, (0, ȳj, z̄j) (or
(0, ȳ′

j
, z̄′
j
)) can be taken equal to the local coordinates of the center

of the Gaussian beam incident on (or emerging from) the jth mirror.
ūj (or ū′

j
) becomes the slope angle of the Gaussian beam incident

on (or emerging from) the jth mirror, which is positive (or nega-
tive) when measured clockwise (or anti-clockwise) from the beam
axis to the z axis. ȳPj is the height at which the beam axis meets
the tangent plane of the jth mirror. The paraxial parameters for the
jth and (j + 1)th mirrors are linked by the distance d′

j
between the

jth and (j + 1)th mirrors. In a concentric-type mirror system under
consideration,

d′
j
= Rj − Rj+1,

z̄j+1 = z̄′
j
− d′

j
, ȳj+1 = ȳ′

j
,

ȳPj+1
= ȳPj + d′

j
ū′
j
,

(5)

for j = 1 and 2. In addition, we have to choose

ū1 �
(

2
R1

− 1
R2

)
ȳ1, (6)

so that the beam axis can pass through the center of the aperture
stop (i.e., ȳp2 = 0).

In cases where the terms of up to fourth order in the aperture
variables are taken into account, the wave function of the light con-
verging to O′

3 can be derived in a similar manner as in Ref. [7]. The
wave function at the local coordinates (x′

3, y′
3, z̄

′
3), referenced to the

third concave mirror, is given by
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