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a  b  s  t  r  a  c  t

Correcting  uneven  intensity  distribution  from  a single  image  has  long  been  a challenging  problem  with
remote  sensing  image.  In this  paper,  an analysis-based  sparse  prior  is  employed  in the  retinex  varia-
tional  framework  for  the  uneven  intensity  correction  of remote  sensing  images.  This  sparse  regularization
model  is  used  to adjust  uneven  intensity  by regularizing  the sparsity  of  the  reflectance  component  under
framelet  transform.  Furthermore,  the alternating  minimization  algorithm  and  split  Bregman  method  are
adopted  to solve  the  framelet-based  sparse  regularization  model.  The  experiments,  with  both  simulated
images  and  real-life  images,  show  that  the  proposed  model  can  effectively  correct  the  uneven  intensity
distribution.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Uneven intensity distribution exists in most remote sensing
images. However, the remote sensing images are very important
for the subsequent image processing, i.e., change detection, image
classification, and other applications [15,16]; thus, it is extremely
important to correct the uneven intensity.

In order to overcome the drawback of absolute radiometric cor-
rection, many relative radiometric correction algorithms have been
developed to adjust the uneven intensity distribution. The homo-
morphic filter (HF) and histogram equalization (HE) are the popular
approaches used to adjust the uneven illumination and redistribute
the intensity distribution [5,19]. According to retinex theory [9], a
number of retinex-based models are utilized to correct the uneven
intensity [6,11,12,14]; besides, some retinex variational models
have also been applied in this field [7,10,13]. Kimmel et al. [7] pro-
posed a L2 regularized model for the illumination component to
indirectly obtain the reflectance. Li et al. [10] provided a joint L2
and TV regularized model for the reflectance component. Michael
et al. [13] used the L2 regularized term of the illumination and the
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TV regularized term of the reflectance. Although great advances
have been made, there is still room for improvement.

It is well known that most images have a sparse approximation.
Thus, in recent years, the sparsity-based prior has been a common
choice for the regularization term [3], and has been widely used
in the fields of denoising [4], deblurring [3], super-resolution
[18], and so on. There are two  typical sparse priors, namely, the
synthesis-based and analysis-based sparse priors [3]. These priors
are based on the fact that natural images usually be represented or
approximated sparsely in some redundant transformed domain,
such as wavelet, framelet, etc. In this paper, the analysis-based
sparse prior regularization is adopted to correct the uneven inten-
sity in the retinex variational framework. Since the reflectance
component can be approximated sparsely, this sparse regulariza-
tion model is used to adjust the uneven intensity by regularizing
the sparsity of the reflectance component under tight frame
system. For its efficiency and simplicity, the framelet tight frame
system is selected to approximate the reflectance component.
Moreover, the split Bregman algorithm is used to solve the pro-
posed model, i.e., the framelet-based sparse regularization model
in retinex variational framework.

The rest of this paper is organized as follows. In Section
2, we review the analysis-based sparse prior regularization
and the framelet system. Section 3 presents the proposed
framelet-based uneven intensity correction model and the split
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Bregman algorithm is used to solve it. The experiment results
are presented in Section 4. Section 5 provides the conclu-
sion.

2. The analysis-based sparse prior the framelet system

In this section, a brief review of the analysis-based sparse prior
is given. First, we denote the observed image g as the lexicograph-
ically ordered column vector in R

n, and W ∈ R
m×n is an analysis

operator. The data g ∈ R
n can be transformed to some coefficients

Wg ∈ R
m by the analysis operator W.  In general, W is a redundant

transform operator, where m > n.
When the analysis-based prior is used for the regularization

model, the goal is to look for the most sparse solution among the
transform coefficient vectors (the coefficients Wg  decomposed by
the analysis operator W)  [3]. In the different application fields, dif-
ferent analysis operators can be used to regularize the data. Thus, it
is important to choose a suitable redundant transform, e.g., a tight
frame system. In this paper, a piecewise linear B-spline tight frame
is used, which is derived by using the piecewise linear B-spline
function as the refinable function [3]. The framelet is as follows
[2,3]:

h0 = 1
4

[1,  2, 1]; h1 =
√

2
4

[1,  0, −1]; h2 = 1
4

[−1, 2, −1] (1)

In the numerical computation, the wavelet frame transform
can be represented by the decomposition matrix W,  which is
constructed depending on the boundary condition. The complete
generating procedure of the matrix is presented in [2,3]. With the
decomposition matrix, the data g can be transformed to the frame
coefficient vector

t = Wg  (2)

The reconstruction algorithm W∗ is the inverse transform of W,
as shown

g = W∗t (3)

where W∗W = I. Generally speaking, WW∗ /= I unless W is an
orthonormal basis.

3. The proposed framelet-based sparse regularization
model

3.1. The proposed model

The proposed model belongs to the retinex variational frame-
work. According to retinex theory, image intensity is composed of
two factors: illumination and reflectance. In the spatial domain, the
product of these two components forms the image intensity, i.e.,

S(x) = L(x) · R(x) (4)

In order to facilitate computation, the product form (4) is con-
verted to the logarithmic domain, i.e.,

s = l + r (5)

where s, l, and r are equal to log(S), log(L), and log(R), respectively.
S(x), L(x), and R(x), respectively, represent the observed image
intensity, the natural illumination and the object reflectance, which
depends on the physical characteristics of the object materials [10].
x is the pixel location in the image. In (4), the reflectance compo-
nent is normalized as 0 ≤ R ≤ 1, owing to its natural characteristics
[10,13]. Thus, we can get the constraints r ≤ 0 and l ≥ s. The relation-
ship (4) between these three variables is still valid for each channel
of the multiband image [10].

Fig. 1. The main procedure of the proposed method.

Our goal is to solve the reflectance component r from (5). In
this paper, we propose a framelet-based sparse regularized varia-
tional model to correct the uneven intensity distribution. There are
four terms in this variational model. The first term, the data fidelity
term ||s − l − r||22, is used to preserve data consistency, where || · ||2
denotes the L2-norm. The use of the data fidelity term can ensure
that the reflectance component does not deviate from the observed
value. Secondly, according to the “gray world” (GW) assumption
[1,10], the average color intensity in a scene is perceived as the mid-
dle gray intensity. Thus, in the logarithmic domain, this constraint
term is translated as [exp(r) − 0.5]2.

It is well known that a regularized prior term is important
for a variational model. Next, we  introduce two  regularized prior
terms for illumination and reflectance, respectively. According to
the characteristics of natural illumination, the illumination compo-
nent l is spatially smooth. In the proposed model, the regularization
term ||∇l||22 is used to preserve the continuity of the illumination
component.

Finally, the most important task is to choose the regulariza-
tion prior for the reflectance. Since the reflectance component r
can be approximated sparsely, the sparse regularization term is
used to adjust the uneven intensity by regularizing the sparsity
of the reflectance component r under framelet system. When this
sparse prior of the reflectance is used in the variational model, it can
alleviate the distortion caused by the uneven illumination and can
preserve the information of the intensity and structure. Thus, the
analysis-based sparse regularization term is employed, as shown:

sparse prior : ||Wr||1 (6)

where W is the framelet transform introduced in the last section.
Here, || · ||1 denotes the L1-norm. Summarizing the above analysis,
the main procedure is shown in Fig. 1.

Finally, we  give the framelet-based sparse regularized varia-
tional model in the retinex variational framework, as follows:

min  F(r, l) =
∑

˝

{∥∥s − l − r
∥∥2

2
+ �1

∥∥Wr
∥∥

1
+ �2

∥∥∇l
∥∥2

2

+˛[exp(r) − 0.5]2} s.t. r ≤ 0, l ≥ s (7)

where the positive parameters �1, �2, and  ̨ are used to trade off
each term in the proposed model.

3.2. Numerical algorithms

In this section, our aim is to look for the solution to the pro-
posed model (7). Since two  unknown variables r and l are involved
in the proposed model, the alternating minimization algorithm is
adopted [13]. The alternating minimization scheme (Algorithm 1)



Download English Version:

https://daneshyari.com/en/article/847818

Download Persian Version:

https://daneshyari.com/article/847818

Daneshyari.com

https://daneshyari.com/en/article/847818
https://daneshyari.com/article/847818
https://daneshyari.com

