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a  b  s  t  r  a  c  t

In this  work,  we  discuss  the  performance  of the  active  laser  region  realized  respectively  by  bulk  (3D)  and
quantum  well  (2D)  semiconductors,  with  emphasis  on  the  basic  behavior  of  the  optical  gain.  Calculations
are  based  on  a semi-classic  model  used  to describe  the  performance  of  the  bulk  semiconductor  (3D)
and  quantum  well  (2D)  actives  zones.  It is revealed  that  the  use  of  quantum  well  structures  results  in
improvement  of these  properties  and  brings  several  new  concepts  to the  active  laser  region.
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1. Introduction

In the past few years, the quantum well laser structure emitting
at mid-infrared (2–5 �m)  presented an important interest for both
theoretical [1–4] and experimental [5,6] considerations. This is due
to the fact that these laser structures have been extensively used
in spectroscopy, environmental monitoring, medical diagnostics,
and military countermeasure systems. An interesting question is
related to the active laser region which can be fabricated with bulk
semiconductors or quantum well. Since the emission wavelength
of a semiconductor corresponds to its band-gap energy, research
focuses on engineering new materials which have their band gaps
at custom-designed energies [7–9]. In the early years of semicon-
ductor optoelectronics, the band gaps that could be achieved were
largely determined by the physical properties of key III–V materi-
als such as GaAs and its alloys such as AlGaAs and InGaAs [10,11].
Then in 1970 a major breakthrough occurred when Esaki and Tsu
invented the semiconductor quantum well and superlattice [12].
They realized that quantum confinement would be of interest to
engineer electronic states with custom-designed properties. In this
work, semi-classical model incorporating Maxwell-equations and
matrix density is used to study the performances of bulk and quan-
tum well semiconductors in term of optical gain. The effects of
temperature and quantum well width are analyzed theoretically.
The numerical results clearly show that decreasing of temperature
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and well widths, the optical gain increases. The layout of this paper
is as follow: The theoretical details to calculate optical gain for bulk
and quantum wells (QWs) semiconductors are given in Section 2.
Results and discussions on the optical gain performances for some
bulk materials such as InAs, GaSb and GaAs and for InAsN/GaSb
QW laser structure are presented in Section 3. Finally, a summary
is given in Section 4.

2. Theoretical considerations

The matrix density approach is considered necessary for the
calculation of the optical gain by taking into account of statistical
density rate. By using the Dirac notation, the operator of the matrix
density is given as follows:

� =
∑

n

f (En)
∣∣�n

〉  〈
�n

∣∣ (1)

where f(En) is the occupation probability associated to the electron
state

∣∣�n

〉
.

The fundamental equation that governs the evolution in time of
� is the Liouville equation:

∂�

∂t
= 1

i�
[H, �] (2)

where H = H0 + Hd represents the total Hamiltonian, H0 and Hd =
−�pd · �E represent respectively the non-perturbative and perturba-
tive Hamiltonians, pd = e r is the momentum operator of the electric
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dipole associated to the particle, e is the elementary charge. For the
conduction band (CB), the matrix density can be written as:

�cc = f (Ec − Ec
F ) (3)

As well as, for the valence band (VB), we have:

�vv = f (Ev − Ev
F ) (4)

where f is the Fermi–Dirac occupation rate, Ec
F and Ev

F are respec-
tively the quasi-Fermi levels for the CB and VB. The general
evolution equation of the matrix density in the electric-dipole
approximation is given by [13]:

∂�

∂t
= 1

i�
[H0 − pd · E, �] − 1

2

[
�

(
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)
+

(
� − �(0)

)
�

]
(5)

where H0 =
[

Ec 0
0 Ev

]
, � =

[
�c 0
0 �v

]
is the operator describing

the intraband relaxation time, and pd · E =
[

0 RcvE
RvcE 0

]
where

Rcv =
〈

�c |e · r|�v
〉

and E is the electric field. We  replace these terms
in Eq. (5), we obtain the following expression:
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We  assume that the operator ı�cv has the same evolution time
as the excitatory field:

ı�cv = ı �̃(ω)e−iωt + ı �̃(−ω)eiωt (7)

where ı �̃(ω) = −
RcvẼ

[
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(
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2 is the inverse

intra-band relaxation time.
The complex electric susceptibility 	̃e can be deduced from

the average electric polarization per unit volume denoted by
〈P〉 = 1

V Tr (�cvRcv) = ε0	̃e(ω)Ẽe−iωt + ε0	̃e(−ω)Ẽ∗eiωt. Thereby, the
complex electric susceptibility will be written as 	̃e(ω) = 	′(ω) +
i	′′(ω)  = 1

V
|Rcv|2

ε0

[
f
(

Ec−Ec
F

)
−f

(
Ev

F
−Ev

)]
(�ω−Ec−Ev−i��int) where V is the volume of the

active zone. This equation can be generalized for the inter-band
transitions involving several states of the CB and VB:
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Vε0
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From the complex electric susceptibility, it is possible to define
several fundamental quantities such as the optical gain G(ω):

G(ω) = e2

m2
0nrcε0ω

1
V

∑
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2.1. Optical gain for bulk semiconductors

Taking into account the density of state, the optical gain for the
bulk semiconductors can be expressed as follows:

G(�ω) = e2

2m0ωnc

∑
c,v

∣∣Mcv
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(
2m∗

r

�2

)3/2√
�ω − Eg(fv − fc) (10)

where
∣∣Mcv

∣∣2 = Ep
4 [2], m∗

r is the reduced effective mass expressed
as m∗

r = mc×mv
mc+mv

, where mc and mv are respectively the conduction

and valence effective masses. The computation of the optical gain
requires firstly the calculation of quasi-Fermi levels obeying on
the electrical neutrality condition. From the carrier density of the
conduction and valence band, we have:
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(
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2��2
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(11)
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(12)

Then, we  obtain the following expressions for the quasi-Fermi
energies:
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F = Eg + 1

ˇ
log

(
N3D

nc

)
(13)

Ev
F = − 1

ˇ
log

(
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)
(14)

2.2. Optical gain for quantum well

In two dimensional semiconductor, i.e. quantum well, it is well
known that the optical gain can be obtained with the contributions
of all the allowed transitions between electron and hole subbands
according to the density matrix theory and taking into account the
density of states �2D

DOS [3]:
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with
∣∣Mcv(k�)

∣∣2 = ı(m0/6)Ep, where ı = 3/2 for TE polarization. c
and ε0 are the velocity of light and permittivity of free space; nr,

Lp, Jnm
cv and �2D

DOS = m∗
��2

∑
i

�(E − Ei) are the refractive index, the

effective width of the active zone, the wave-function overlap and
the two-dimensional density of states, respectively. f c

n and f v
m are

Fermi functions for the nth subband in the conduction band and mth
subband in the valence band, respectively as well as the energy dis-
persion curves Ec

n and Ev
m, and �int is the intraband relaxation time.

We assumed that �int is a constant value, �int = 1 × 10−14 s [14]. Note
that, the numerical calculation of quasi-Fermi levels must consider
the population of carriers in confined conditions (2D states) and
the neutrality condition attributed in the active region, we obtain:

N2D = m

��2
kBT log(1 + exp −ˇ(Ec − Ec

F )) (16)
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��2
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Therefore, we have:
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3. Results and discussion

In order to investigate the performances for some bulk materials
(3D), we  have taken the case of GaAs, InAs and GaSb semiconductors
which are widely used in the optoelectronic devices. In all the
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