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a  b  s  t  r  a  c  t

Here  we  present  the  propagation  of pulse  in  a coupled  waveguide  structures.  Finite element  method
has  been  effectively  applied  to  analyze  the closely  coupled  waveguide  structure.  The  mode  coupling
phenomena  is well  described  in  this  paper.  It is demonstrated  that  there  are  substantial  amount  of  power
exchange  takes  place  between  various  modes.  We  excite  the  structure  with  original  mode  pattern  which
can  be  well  approximated  by  slightly  deviated  Gaussian  shape  pulse.  Then  we  apply  the  mode  propa-
gation  concept  to estimate  the  mode  beating  phenomena  in  coupled  structure.  The effect  of  waveguide
separation  is  well  demonstrated  by  using  examples.  We  too  derive  the  Fresnel  equation  and  discuss  a
solution  strategy  in  terms  of  the  finite  element  method.  We  apply  the  transparent  boundary  condition
to  avoid  the  unwanted  reflections  from  the artificial  computation  windows.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Coupled waveguides have been the object of several investi-
gations in recent years for the promising prospect of designing
of optical switches and optical coupler to mention few [1–5].
Coupling between optical modes is compulsory in the design of
integrated optical devices. Coupled mode theory describes this
energy exchange and serves as the primary tool for designing
of optical couplers, switches and filters. In this paper we have
explored some applications of coupling between three closely
located waveguides based on finite element method approach. We
found that coupling is maximized when the propagation coeffi-
cient,  ̌ for the various mode’s are equal. We  can enhance the
coupling between dissimilar waveguides by using phase matching
technique. The coupling of radiation from a waveguide into free
space is an important problem in optoelectronics. The calculation
is difficult because the guided modes couple to free space modes,
which are not normalizable. The design of such couplers is as much
art as engineering. Finally we have applied our approach to ana-
lyze the actual lowest order mode propagation to this structure.
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The coupling period of the power is verified by Beam Propagation
method [6–23].

2. Finite element method analyses for coupled waveguide
structure

In this section, the brief formulation of FEM is described while
considering both TE and TM mode as an example in the coupled
waveguide structure [3,4]. A planar waveguide is characterized by
a permittivity profile which depends on one coordinate only, say x.
If ε = ε(x) is a varying function with x-coordinates we  speak of an
arbitrary index waveguide. A slab waveguide consists of step index
permittivity profile. The lowest is the substrate, on top of which
there are one or many thin films, the topmost region is the cover.
A coupled waveguide is characterized by a piecewise constant per-
mittivity profile as shown in Fig. 1, the transverse region, 4 ≤ x ≤ 12,
which has a three coupled waveguide structure is denoted as the
core and the refractive indices in the cover and the substrate are
assumed to be constant. The waveguide separation for this closely
coupled waveguide structure is 1 �m.  The maximum refractive
index in the core is n1, and the refractive indices in the cover and
the substrate are n0 and ns respectively. Here we assume ns ≥ n0.
The wave equation for the TE mode is given by [3–8];

d2Ey

dx2
+ {k2n(x)2 − ˇ2}Ey = 0, (1)
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Fig. 1. Permittivity profile ε(x) versus cross section coordinate x for closely coupled waveguides.

and for the TM mode [19];

d

dx

(
1
n2

dHy

dx

)
+

(
k2 − ˇ2

n

)
Hy = 0, (2)

The boundary conditions require the continuity of Ey for TE
mode is,

Hz = j

ω�0

dEy

dx
(3)

and the boundary conditions require the continuity of Hy for TM
mode is,

Ez = − j

ωε0n2

dHy

dx
(4)

at various interfaces. Before transforming the wave Eq. (1) and
boundary conditions (Eqs. (3) and (4)) into the variational problem,
the parameters are normalized as

� = x

a
, Ey(x) = R(�), D = A

a
. (5)

Here “A” is the boundary at various coupled waveguide interface.
The wave equation and boundary condition are then rewritten for
TE mode a

d2R

d�2
+ [v2q(�) − w2]R = 0. (6)

R(�) and
dR(�)

d�
are continuous at � = 0 and � = D. (7)

Here, normalized transverse wave-number w, normalized fre-
quency v, and normalized refractive-index distribution q(�) are
defined by

w = a
√

ˇ2 − k2n2
s ,

v = ka
√

n2
1 − n2

s ,

q(�) = n(x)2 − n2
s

n2
1 − n2

s

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

where k is the wave number. The solution of the wave Eq. (6) under
the constraints of the boundary condition Eq. (7) is obtained as
the solution of the variational problem that satisfies the stationary
condition of the functional.

I[R] = −
∫ ∞

−∞

(
dR

d�

)2

d� +
∫ ∞

−∞
[v2q(�) − w2]R2d� (9)

the eigenvalue matrix elements for the TE and TM modes are
expressed as,

c0.0 = �0 − (3q0 + q1)�0
�2

12
ı2 + �0

w2

3
ı2 + �0w0ı,

ci,i = (�i−1 + �i) − (qi−1�i−1 + 3qi�i−1 + 3qi�i + qi+1�i)
�2

12
ı2 + (�i−1 + �i)

w2

3
ı2 (i = 1 − (N − 1)),

ci,i+1 = ci+1,i = −�i − (qi + qi+1) �i
�2

12
ı2 + �i

w2

6
ı2 (i = 0 − (N − 1)),

cN,N = �N−1 − (qN−1 + 3qN)�N−1
�2

12
ı2 + �N−1

w2

3
ı2 + wı,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where

ni =

⎧⎨
⎩

1 TE mode

n2
s

n2(�i)
TE mode

(11)

ns0 =

⎧⎨
⎩

1 TE mode

n2
s

n2
0

TE mode
(12)

For nontrival solutions expect for R0 = R1 = · · · = RN = 0, the deter-
minant of the matrix C should be

det(C) = 0 (13)

where the element of the matrix C is given by Eq. (10) and dis-
cretization step ı is given by ı = D/N. Eq. (13) is a dispersion equation
(eigenvalue equation) for the TE/TM modes in coupled waveguide
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