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a  b  s  t  r  a  c  t

This  paper  introduces  a three-dimensional  system  with  no  equilibrium  point  in  which  the  Shilnikov
method  is not  applicable  to demonstrate  the  chaos.  The  remarkable  particularity  of  the  system  is  that  it  can
generate  multiple  attractors  with  different  system  parameters  and initial  values.  To  further  understand
the  complex  dynamics,  some  basic  properties  of the  system  are  studied  theoretically  and  numerically.
Simultaneously,  by considering  the  sensibility  to  system  parameter  and  initial  value,  a  robust  synchro-
nization  scheme  of  this  chaotic  system  is  proposed.  Sufficient  conditions  to guarantee  synchronization
are  given  in  the  sense  of H∞ stability  theory,  numerical  simulations  are  performed  to  further  verify  the
effectiveness.
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1. Introduction

Since the famous Lorenz system was found in 1963 [1],
numerous chaotic systems have been reported [2–9]. For
three-dimensional autonomous hyperbolic systems, a generally
recognized method proving the existence of chaos is Shilnikov
criterion, which brings on four classes of chaos: homoclinic orbit
chaos, heteroclinic orbit chaos, hybrid type with both homoclinic
and heteroclinic orbits, and chaos without homoclinic orbit and
heteroclinic orbit. Recall that a homoclinic orbit is a trajectory that
is doubly asymptotic to an equilibrium point, or closed orbit asymp-
totic to itself. A heteroclinic orbit is a trajectory that connects an
equilibrium point to another, or connects a closed orbit to another
closed orbit, respectively.

Recently, several researchers direct toward finding and ana-
lyzing peculiar chaotic flows with stable equilibrium or a line
equilibrium, or in which there exists no equilibrium at all [10–18].
For such systems, there is little knowledge about the dynamical
properties, and the Shilnikov criteria cannot be used to verify the
chaos because of the lack of homoclinic or heteroclinic orbit [10].
This further reveals that the analytic criterion about which the sys-
tem has at least one unstable equilibrium point for generating chaos
is certainly not necessary.

In this paper, we introduce a three-dimensional autonomous
system with one quadratic cross-product term, one square term,
and one constant term. Since there is no equilibrium point and thus

∗ Corresponding author. Tel.: +86 7308640052.
E-mail address: ChaoEncryption@126.com (C.-L. Li).

there is no homoclinic or heteroclinic orbit in this dynamical sys-
tem, the Shilnikov method is not applicable to verify the existence
of chaos. The remarkable feature of the system is that it can gen-
erate multiple-shape attractors with different system parameters
and different initial values, which greatly enhanced the potential
application of this system in secure communications since the com-
plexity of the dynamics can be flexibly chosen or well increased. To
further understand the complex dynamics, some basic properties
of the system are studied theoretically and numerically. Simulta-
neously, by considering the sensibility to system parameter and
initial value, a H∞ control scheme is proposed to realize complete
synchronization of this chaotic system, the control scheme is simple
with a single input and robust against the uncertainty/disturbance
of system parameter and initial value. Numerical simulations illus-
trate that the proposed control law is effective.

2. The proposed chaotic system

2.1. System description

In the search for chaotic flows with no equilibrium, the following
unusual system was  obtained:⎧⎪⎨
⎪⎩

ẋ1 = x2 − a

ẋ2 = −x1 + x2x3

ẋ3 = x2 − x2
2

(1)

This is a one-parameter family of chaotic flows in the sense that a
sequence of multiple attractors can be continuously observed as the
real parameter a varies gradually, and the space of coefficients was
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Table 1
Dynamical properties of the system for some typical values of parameter a.

Case Parameter a Les DKY Dynamical
property

(a) 0.39 (0.043159, 0, −0.047389) 2.9107 Chaos
(b) 0.46 (0.025271, 0, −0.029027) 2.8706 Chaos
(c) 0.48 (0.016063, 0, −0.01683) 2.9544 Chaos
(d) 0.7 (0.0037816, 0, −0.0041671) 2.9075 Chaos

searched for the “elegant” values by which every other coefficients
are set to ±1.

It is easy to know the invariance of the system under coor-
dinate transformation (x1, x2, x3, t) → (−x1, x2, −x3, −t), which
results in the occurrence of two types of solutions [16]. The first
type has a 180◦ rotational symmetry about the x2-axis and is
time-reversal invariant. Thus it exhibits conservative behavior. The
second type has one attractor in forward time and another attractor
in reversed time, which are symmetric mutually under the rotation
of 180◦ about the x2-axis. The reversed time attractor is a repel-
lor in forward time. Since it cannot be both an attractor and a
repellor for the same points in state space, any symmetric solu-
tions necessarily conserve state space volume on average. Thus, it
brings on the emergence of both behaviors depending on the initial
conditions.

2.2. Multiple attractors

One of distinct feature of the system is that it can generate
strange attractors with different shape over a wide range of param-
eter. As the illustration, some typical values of parameter a with the
same initial value (0.01, 0.03, −0.05) that lead to different system
portraits are summarized in Table 1. All these cases are dissipa-
tive with LE1 + LE2 + LE3 < 0 and the attractors projected onto the
x1x3-plane are shown in Fig. 1.

Besides, from the information in Table 1, the Kaplan–Yorke
dimension (DKY) of the proposed system is closer to 3 and is much
greater than most of the existed chaotic systems, specially com-
pared with the chaotic flows with no equilibria introduced by [15]
in which the Kaplan–Yorke dimension is only slightly greater than
2.

The third striking feature for the proposed system is that, with
the variety of initial value x2(0), it is found to give rise to the coex-
istence of periodic, ribbon and strange attractors. We  summarize
below as an example with a = 0.52.

(1) The initial condition (0.01, 0.6, −0.05) gives a strange attrac-
tor with Lyapunov exponents (0.019456, 0, −0.021678) and a
Kaplan–Yorke dimension of 2.8975, and the initial condition
(0.01, −0.6, −0.05) gives a ribbon with Lyapunov exponents
(0, 0, 0) and DKY = 2.0. The phase portraits are demonstrated
in Fig. 2(a) and (b), respectively.

(2) The initial condition (0.01, 1.3, −0.05) gives a strange attrac-
tor with Lyapunov exponents (0.01925, 0, −0.020134) and
a Kaplan–Yorke dimension of 2.9561, and the initial condi-
tion (0.01, −1.3, −0.05) gives a periodic orbit with Lyapunov
exponents (0, −0.036174, −0.7322) and DKY = 1.0. The phase
portraits are demonstrated in Fig. 3(a) and (b), respectively.

(3) The initial condition (0.01, 1.2, −0.05) gives a complex ribbon
with LEs = (0, 0, 0) and DKY = 2.0, and initial condition (0.01,
−1.2, −0.05) gives a periodic orbit with LEs = (0, −0.036211,
−0.73447) and DKY = 1.0. The phase portraits are demonstrated
in Fig. 4(a) and (b), respectively.

2.3. Analysis of equilibrium point

2.3.1. Case with a line equilibrium
Applying the equilibrium condition to system (1), it is found that

there exists a line equilibrium point as x* = (0, 0, x3) for a = 0, and the
corresponding eigenvalues are �1 = 0, �2,3 = (x3 ±

√
x3

2 − 4)/2.
One holds the following statements.

(I) When x3 > 2, we  have �2,3 > 0. So system (1) has a normally
hyperbolic unstable node at equilibrium x*.

(II) When x3 < −2, we  have �2,3 < 0. So system (1) has a normally
hyperbolic stable node at equilibrium x*.

(III) When −2 < x3 < 0, �2,3 = x3 ± i
√

4 − x3
2, Re(�2,3) < 0. System

(1) has a normally hyperbolic stable focus at equilibrium x*.
(IV) When 0 < x3 < 2, �2,3 = x3 ± i

√
4 − x3

2, Re(�2,3) > 0. System (1)
has a normally hyperbolic unstable focus at equilibrium x*.

If a = 1, it is found that there exists another line equilibrium point
as x** = (x3, 1, x3) with eigenvalues �1 = 0, �2,3 = (x3 ±

√
x3

2 − 8)/2.
Similarly, the following statements hold.

(I) When x3 > 2
√

2, we  have �2,3 > 0. System has a normally
hyperbolic unstable node at equilibrium x**.

(II) When x3 < −2
√

2, we  have �2,3 < 0. System has a normally
hyperbolic stable node at equilibrium x**.

(III) When −2
√

2 < x3 < 0, �2,3 = x3 ± i
√

8 − x3
2, Re(�2,3) < 0. Sys-

tem (1) has a normally hyperbolic stable focus at equilibrium
x**.

(IV) When 0 < x3 < 2
√

2, �2,3 = x3 ± i
√

8 − x2
3, Re(�2,3) > 0. Sys-

tem (1) has a normally hyperbolic unstable focus at
equilibrium x**.

The system is the best-known example in which there exists a
line equilibrium when a = 0 or a = 1, but it does not have a strange
attractor since it is conservative.

2.3.2. Case with no equilibrium
If a /= 0  and a /= 1, it is found that there exists no equilibrium

point in system (1) which does have strange attractors since the
dissipative condition of LE1 + LE2 + LE3 ≤ 0 will cater. Even so, little
knowledge about the dynamical properties is acquired. Recently, a
new classification of self-excited attractor or hidden attractor for
chaotic systems is introduced [18,19]. Self-excited attractor is asso-
ciated with an unstable equilibrium that has lost its stability but
that remains in its basin of attraction. Also a hidden attractor has a
basin of attraction but it does not intersect with any small neigh-
borhoods of equilibrium points. Obviously, chaotic systems with
no equilibrium are part of examples of hidden attractors, which
are rarely found but of theoretical and practical significance since
they allow unexpected and potentially disastrous responses to any
tiny perturbations.

3. Synchronization of the proposed chaotic system

As argued above, dynamical behavior of system (1) is of sensi-
bility to system parameter and initial value. Actually, in practical
synchronization process, disturbance of system parameter exists
inevitably, and the initial values of synchronization systems cannot
be predetermined, which will make the real synchronization prob-
lem much more complicated and even destroy the performance of
synchronization. In this paper, a H∞ control scheme is developed to
realize complete synchronization of this chaotic system, the con-
trol scheme is simple with a single input yet robust against the
uncertainties of system parameter and initial value.
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