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a  b  s  t  r  a  c  t

Thin-film  calculations  are  an  important  task  during  optical  design.  A new  didactic  and  simple  methodol-
ogy  based  on  flow graph  theory  is  introduced  in this  article.  It is  proposed  as  an  alternative  way  to  matrix
calculations  as  well  as it is  considered  to be  a new  tool  to solve  lengthy  graphical  maps.  It  turned  out  that,
this  technique  simplifies  and reduces  the calculus  above  all,  if  the  impact  of  certain  design  parameter
upon  others  is  of our interest.  However,  the  method  is  applied  to  solve  multilayer  dielectric  structures.
Furthermore,  as  an example  to demonstrate  the  utility  of the  method,  the  complex  refractive  index  of
the  rear surface  corresponding  to a  3-layer  dielectric  system  is obtained.

© 2015  Published  by  Elsevier  GmbH.

1. Introduction

Multilayer optical coatings are structures of one or more lay-
ers of several thin films [1]. They are employed in many fields in
optical science as well as industrial optical techniques [2]. They
can be found in almost every optical device. The features of optical
coatings cover high-reflectivity, spectral filtering, anti-reflectivity
and beam splitting. Optical surfaces with desired reflectance, trans-
mittance and absorption coefficients are produced by means of
thin film coating [3]. Refractive indices of the film and surround-
ing regions, the film thickness, and the viewing angle are crucial in
thin film properties. At present, in order to receive the best optical
results one needs to be aware of all aspects of design and produc-
tion. In this article, a new calculation methodology based on graph
formalism [4] is extended to include multilayer structures so as to
guarantee optimum design results.

The plan of this work is as follows: Section 2 is devoted to give
a brief overview on flow-graph algebra and the basic reduction
rules, followed by a résumé of Path-ordinal calculation method
for high-order graph compositions. In Section 3, the path-ordinal
method is applied to a multilayer structure and a general formalism
is obtained. Finally in Section 4, as an example, the new high-order
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graph formalism is employed to calculate the complex refractive
index of the rear surface corresponding to a 3-layer structure.

2. High order graphs formalism

Matrix formalism is commonly used to analyze the behavior of
multilayer structures [1,6,9]. Unfortunately, matrices of high order
or long composition of matrices are rather complicated to be used
due to the lengthily mathematical operations. However, the exten-
sion of the graph theory to manage problems of linear algebra
provides an alternative tool that simplifies the treatment of certain
kind of problems [5].

Flow graphs are a graphical language for causality of linear equa-
tions. They are geometrical structures of tiny circles and lines. The
circles in a graph represent variables while the line connecting two
circles gives the relation between them. White and black colours of
the nodes show their orientation, which is analogous to the side of
the equality where they are located in traditional algebra. The black
nodes represent “sources”, namely the input variables one has to
deal with to obtain the output variables called “sinks”, which are
indicated by white nodes. The line connecting two nodes is called
“branch”, it indicates that there exist a relation between these two
nodes. The label of the branch is termed “transmittance”, it gives the
relation between the interconnected two  variables. Furthermore,
following the usual agreement, if it is not specified any value for a
branch, it will be understood that it has the value 1. Branches with
transmittance zero are not drawn. Fig. 1 shows some flow graph
representation of linear equations.
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Fig. 1. Two examples of linear equations and their corresponding graphs.

Fig. 2. A second order graph representing Eq. (2.1). The homologues of the vector
parameters are the nodes and the homologues of the 2 × 2 matrix elements are the
branches transmittance.

Fig. 3. A cascade graph composed of n graphs each of order two, attached side by
side. Each individual graph represents a 2 × 2 matrix.

As flow graphs express linear equations, similarly, it is also
possible to express with graphs a linear expression between two
vectors (the vector is regarded as column matrix). Considering the
algebraic relation between the two dimensional vectors of Eq. (2.1),
the second order graph of Fig. 2 is obtained.(
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Now we introduce some criteria so as to describe graphs. The
order of a graph is defined as the smallest number of sources or sinks
forming such graph. Also, we define a cascade graph as a graphical
composition of several graphs of the same order. A m × n cascade
graph is referred to a graph composed of n graphs each of order m.

Many problems in physics imply multiplication of matrices of
the same order which are solved through its alternative graphical
representation. Fig. 3 represents a composition of n graph each of
order two, the result is 2 × n cascade graph,
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When a cascade flow graph has been formed, there exist two
conventional ways to get the result of the graph. First, by the flow
graph algebra technique and second, by Mason’s rule [8]. By means
of the five basic algebraic rules namely: addition, product, trans-
mission, suck up node and self-loop elimination rules an equivalent
simpler graph is obtained. Mason’s rule is recommended when we
are only interested in one of the output variables as a function of
one of the input variables.

In this article we apply an alternative method characterized by
the ordinal of the path [4]. Both the equivalent matrix as well as the
residual graph of the whole system can be obtained directly from
the individual element matrix of the system cascade graph. Also,
the impact of certain input parameters of the problem on others
could be obtained easily without solving the whole graph.

Consider a m × n cascade graph of Fig. 4, the input variables are
the vector

�x0 = (x01, x02, x03, . . .,  x0k, . . .,  x0m) ,

While the output variables are represented by the vector

�xn = (xn1, xn2, xn3, . . .,  xnk, . . .,  xnm) .

The total number of possible paths connecting the input nodes
to the output ones is,

Nm,n = mn+1.

If “i” is defined as the “path-ordinal”, then for any arbitrary path
(1 ≤ i ≤ Nm,n) connecting any node of the input vector with other in
the output vector. There exist a characteristic “path-set” {�ij} that
defines the trajectory of the path along the graph.

{
�ij

}
=
{

�i0, �i1, �i2, . . .,  �in

}
,

where �ij can take any of the values, 1 ≤ �ij ≤ m. If �ij = k, this means
that the path number “i” passes through the kth node of the jth
vector, xjk.

According to flow graph algebra, any possible path Pi starting
from a node in the input vector and ending in an output-vector-
node has a “path-value” which can be considered as the product of
the transmittances corresponding to each branch along the path,

Pi =
n∏

j=1

Aij

(
�i(j−1), �ij

)
, (2.3)

where Aij is considered to be the transmittance of the branch in the
jth graph within the path “i”.

Defining a path sequence, all the paths “i” that starts from the
node x0k have the ordinal i = k, k + m, k + 2m,  . . .,  k + nm. Correspond-
ing to Pk+nm where 1 ≤ k ≤ m for every n = 0, 1, . . .,  m − 1.

As the output vector → xn is composed of m outgoing nodes,
therefore the total number of paths Nm,n is divided into m groups
each has mn paths. The first group ends at the node xn1 correspond-
ing to the ordinals (1  ≤ i ≤ mn) and the second group ends at the
node xn2 (1 + mn ≤ i ≤ 2mn). The paths that end at the node xnL have
the path ordinals within the range (1 + (L − 1) mn ≤ i ≤ Lmn).

For m × n cascade graph, there are mn−1 paths connecting an
output node with an input one. According to the path sequence,
the paths that start from an input node x0k and ends at an out-
put node xnL, have the path ordinals i = k + (L − 1) mn, k + m +
(L − 1) mn, . . .,  k − m + Lmn. The contribution of the source x0k to
the sink xnL, can be expressed as,

xnL =
m∑

k=1

TkLx0k,

where TkL is the summation of the product of all the possible paths
from k to L.

TkL =
mn−1∑
r=1

PkL
k−m+(L−1)mn+rm. (2.4)

An example of the path-set and its corresponding path-value
are illustrated in Fig. 5.
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